Faster Parsing and Supertagging Model Estimation

Jonathan K. Kummerfeld ^a James R. Curran ^a Jessika Roesner ^b

School of Information Technologies a University of Sydney
Australia
{jkum0593,james}@it.usyd.edu.au

Department of Computer Science b University of Texas at Austin USA jessi@mail.utexas.edu

ALTW 2009

The University of Sydney

Syntactic information is crucial for many tasks in NLP, such as QA and MT, but parsers are slow:

- State-of-the-art, usually < 1 sentence / sec
- Fastest state-of-the-art, < 50 sentences / sec

Far too slow to process the data available:

Motivation

- > 1,000,000,000,000 words of English online
- More coming

Motivation

0000000

Tagging and Parsing

The University of Sydney

One claims he is pro-choice

Part of Speech Tagging

The University of Sydney

One claims he is pro – choice NNVBZ PRP VBZ JJ

Motivation

00000000

Combinatory Categorial Grammar (CCG) - Supertagging

$$\frac{\text{One}}{N} \frac{\text{claims}}{(S \backslash NP)/S} \frac{\text{he}}{NP} \frac{\text{is}}{(S \backslash NP)/(S \backslash NP)} \frac{\text{pro-choice}}{S \backslash NP}$$

Combinatory Categorial Grammar (CCG) – Parsing

Motivation

00000000

$$\frac{N}{NP} \xrightarrow{\text{claims}} \frac{\text{he}}{NP} \xrightarrow{\text{is}} \frac{\text{pro-choice}}{S \backslash NP}$$

$$\frac{NP}{NP} \xrightarrow{S \backslash NP} \xrightarrow{S \backslash NP}$$

$$\frac{S \backslash NP}{S} \xrightarrow{S \backslash NP}$$

Supertagging Ambiguity

Ι

ate pizza

pizza ate

with

with

anchovies

cutlery

Supertagging Ambiguity

$$\frac{I}{NP} \underbrace{\frac{\text{ate}}{(S \backslash NP)/NP}}_{NP} \underbrace{\frac{\text{pizza}}{NP}}_{NP} \underbrace{\frac{((S \backslash NP) \backslash (S \backslash NP))/NP}{(S \backslash NP) \backslash (S \backslash NP)}}_{S \backslash NP} \underbrace{\frac{\text{cutlery}}{NP}}_{S}$$

Supertagging Ambiguity

The University of Sydney

Motivation

00000000

Motivation – Parsing

The University of Sydney

The key idea behind the speed of the fastest parsers today is to shift work from parsing to tagging: For n words, each with k tags

- Tagging O(nk)
- Parsing $O(n^3k^2)$

Outline

Core Idea

 Provide fewer tags, but still include the tags the parser would have used anyway

Implementation

- Perceptron Algorithms
- Parallelisation

Results

- Modified rule usage
- Training data type and volume
- Algorithm comparison
- Feature extension

Ideal World

$$\frac{\text{One}}{N} \frac{\text{claims}}{(S \backslash NP)/S} \frac{\text{he}}{NP} \frac{\text{is}}{(S \backslash NP)/(S \backslash NP)} \frac{\text{pro-choice}}{S \backslash NP}$$

Current World – Problem

$$\frac{\text{One}}{N} \frac{\text{claims}}{(S \setminus NP)/NP} \frac{\text{he}}{NP} \frac{\text{is}}{(S \setminus NP)/(S \setminus NP)} \frac{\text{pro-choice}}{S \setminus NP}$$

4 D F 4 A F F 4 B F

Current World - Solution

One	claims	he	is	pro-choice
$\overline{N/N}$	$(\overline{S \backslash NP)/NP}$	\overline{NP}	$(\overline{S \backslash NP)/(S \backslash NP)}$	$\overline{S \backslash NP}$
N	N		$(S \backslash NP)/NP$	$(S \backslash NP) \backslash (S \backslash NP)$
(S/S)/(S/S)			$(S \backslash NP)/(S \backslash NP)$	$(S \backslash NP)/S$
				N
				$(S \backslash NP)/PP$
				$(S \backslash NP)/NP$
				N/N
				$(S \backslash NP)/(S \backslash NP)$

Adaptive Supertagging

The University of Sydney

$$\frac{\text{One}}{N/N} \stackrel{\text{claims}}{\longrightarrow} \frac{\text{he}}{NP} \stackrel{\text{is}}{(S\backslash NP)/(S\backslash NP)} \frac{\text{pro-choice}}{S\backslash NP}$$

$$\frac{(S\backslash NP)/NP}{(S\backslash NP)/(S\backslash NP)} \frac{(S\backslash NP)/PP}{(S\backslash NP)/NP}$$

$$\frac{(S\backslash NP)/(S\backslash NP)}{N/N}$$

How do we teach the supertagger to produce these tags? Use the parser!

Outline

Core Idea

 Provide fewer tags, but still include the tags the parser would have used anyway

Implementation

- Perceptron Algorithms
- Parallelisation

Results

- Modified rule usage
- Training data type and volume
- Algorithm comparison
- Feature extension

15

Implementation

Component	Initial System	Additions
Statistical Feature Extraction	3 Types	+9 Types
	Single thread	Parallel
Parameter Estimation	BFGS, GIS	AP, MIRA
	Single thread	Parallel

Implementation – Extra Constraint

Added a constraint that only allows Backward Composition to occur if both children are type raised

Algorithm	Training Time (sec)			
	40k	80k	440k	
GIS	7,200	14,000	*	
BFGS	6,300	13,000	*	
AP	76	160	950	
MIRA	96	200	1,200	

Implementation – Initial System

Implementation – Parallelised

Implementation - Parallelised Weight Estimation

Figure: Information flow for parallel model estimation

Results

Outline

Core Idea

 Provide fewer tags, but still include the tags the parser would have used anyway

Implementation

- Perceptron Algorithms
- Parallelisation

Results

- Modified rule usage
- Training data type and volume
- Algorithm comparison
- Feature extension

Extra Constraint on Rule Application

	F-score	Speed
Parser	(%)	(sent / sec)
C&C 1.02	83.22	31.7
Modified	83.41	47.8

Plan

- Acquire a large set of unannotated data Wikipedia
- Parse the corpus
- Retrain the supertagger, using the parsed sentences

Variations

- Amount of data
- Estimation algorithms
- Feature set

Results

000000

Training Data Type and Volume

The University of Sydney

The University of Sydney

The University of Sydney

Results

000000

Training Data Type and Volume

Figure: Evaluation on Wikipedia

The University of Sydney

Results

000000

The University of Sydney

Figure: Evaluation on Wikipedia

Results

000000

Feature Extension

The University of Sydney

Feature Extension

The University of Sydney

Figure: Evaluation on Wikipedia

Future Work

- Other domains
- Expanded training sets
- Co-training
- Online learning

Conclusion

Improved training:

- Enabled access to more text
- Constructed an effective source of more text

Improved parsing speed:

- Added an extra constraint on rule usage
- Trained models that are adapted to the parser

Improved parsing accuracy:

- Constructed statistical models using more evidence
- Expanded the set of statistical features

0000

Metric	Initial	Final	Ratio
Training			
Sentences	40k	80k	2
Time (secs)	6,300	160	1/40
Accuracy			
F-score (%)	83.22	83.79	n/a
Speed			
WSJ (sents / sec)	31.7	62.8	2.0
Wikipedia (sents / sec)	30.8	69.7	2.3

Acknowledgements

- Johns Hopkins University, CLSP Summer Workshop
- Capital Markets Cooperative Research Centre Limited

