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Motivation – Parsing

Syntactic information is crucial for many tasks in NLP, such as QA
and MT, but parsers are slow:

� State-of-the-art, usually < 1 sentence / sec

� Fastest state-of-the-art, < 50 sentences / sec

Far too slow to process the data available:

� > 1,000,000,000,000 words of English online

� More coming
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Tagging and Parsing

One claims he is pro− choice
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Part of Speech Tagging

One claims he is pro− choice
NN VBZ PRP VBZ JJ
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Combinatory Categorial Grammar (CCG) – Supertagging

One claims he is pro− choice

N (S\NP)/S NP (S\NP)/(S\NP) S\NP
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Combinatory Categorial Grammar (CCG) – Parsing

One claims he is pro− choice

N (S\NP)/S NP (S\NP)/(S\NP) S\NP
>

NP S\NP
<

S
>

S\NP
<

S
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Supertagging Ambiguity

I ate pizza with cutlery

NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

I ate pizza with anchovies

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

S\NP
<

S
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Motivation – Parsing

The key idea behind the speed of the fastest parsers today is to shift
work from parsing to tagging:
For n words, each with k tags

� Tagging – O(nk)
� Parsing – O(n3k2)
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Outline

Core Idea

� Provide fewer tags, but still include the tags the parser would
have used anyway

Implementation

� Perceptron Algorithms

� Parallelisation

Results

� Modified rule usage

� Training data type and volume

� Algorithm comparison

� Feature extension
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Ideal World

One claims he is pro− choice

N (S\NP)/S NP (S\NP)/(S\NP) S\NP
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Current World – Problem

One claims he is pro− choice

N (S\NP)/NP NP (S\NP)/(S\NP) S\NP
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Current World – Solution

One claims he is pro− choice

N /N (S\NP)/NP NP (S\NP)/(S\NP) S\NP

N N (S\NP)/NP (S\NP)\(S\NP)

(S/S )/(S/S ) (S\NP)/(S\NP) (S\NP)/S

N

(S\NP)/PP

(S\NP)/NP

N /N

(S\NP)/(S\NP)
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Adaptive Supertagging

One claims he is pro− choice

N /N N NP (S\NP)/(S\NP) S\NP

(S\NP)/NP (S\NP)/PP

(S\NP)/(S\NP) (S\NP)/NP

N /N

How do we teach the supertagger to produce these tags?
Use the parser!
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Outline

Core Idea

� Provide fewer tags, but still include the tags the parser would
have used anyway

Implementation

� Perceptron Algorithms

� Parallelisation

Results

� Modified rule usage

� Training data type and volume

� Algorithm comparison

� Feature extension
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Implementation

Component Initial System Additions

Statistical Feature Extraction 3 Types +9 Types
Single thread Parallel

Parameter Estimation BFGS, GIS AP, MIRA
Single thread Parallel
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Implementation – Extra Constraint

Added a constraint that only allows Backward Composition to occur if
both children are type raised
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Implementation – AP and MIRA

Algorithm Training Time (sec)
40k 80k 440k

GIS 7,200 14,000 *
BFGS 6,300 13,000 *

AP 76 160 950
MIRA 96 200 1,200
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Implementation – Initial System

extract 
features

estimate 
weights modeldata contexts
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Implementation – Parallelised
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Implementation – Parallelised Weight Estimation

0 3

1 2

45

0 3

1 2

45

Figure: Information flow for parallel model estimation
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Outline
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Extra Constraint on Rule Application

F-score Speed
Parser (%) (sent / sec)

C&C 1.02 83.22 31.7
Modified 83.41 47.8
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Plan

� Acquire a large set of unannotated data – Wikipedia

� Parse the corpus

� Retrain the supertagger, using the parsed sentences

Variations

� Amount of data

� Estimation algorithms

� Feature set
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Training Data Type and Volume
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Algorithm Comparison
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Feature Extension
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Future Work

� Other domains

� Expanded training sets

� Co-training

� Online learning
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Conclusion

Improved training:

� Enabled access to more text

� Constructed an effective source of more text

Improved parsing speed:

� Added an extra constraint on rule usage

� Trained models that are adapted to the parser

Improved parsing accuracy:

� Constructed statistical models using more evidence

� Expanded the set of statistical features
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Conclusion

Metric Initial Final Ratio

Training
Sentences 40k 80k 2
Time (secs) 6,300 160 1/40

Accuracy
F-score (%) 83.22 83.79 n/a

Speed
WSJ (sents / sec) 31.7 62.8 2.0
Wikipedia (sents / sec) 30.8 69.7 2.3
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