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Abstract

Statistical parsers are crucial for tackling the grandlehgles of Natural Language Processing. The
most effective approaches to these tasks are data drivepalsers are too slow to be effectively used
on large data sets. State-of-the-art parsers generallyotamocess more than one sentence a second,
and the fastest cannot process more than fifty sentencesoadsethe situation is even worse when
they are applied outside of the domain of their training d&tee fastest systems have two components,
a parser, which has time complexiy(n?) and a supertagger, which has linear time complexity. By
shifting work from the parser to the supertagger we drarallyiemprove speed.

This work demonstrates several major novel ideas that imgpparsing efficiency. The core idea is
that the tags chosen by the parser are gold standard dats fargertagger. This leads to the second
surprising conceptual development, that decreasingriggaicuracy can improve parsing performance.
To demonstrate these ideas required extensive developrhém C&C supertagger, including imple-
mentation of more efficient estimation algorithms and peliahtion of the training process. This was
particularly challenging as the C&C supertagger is a stétire-art high performance system designed
with a focus on speed rather than flexibility.

| was able to significantly improve performance on the steshdgaluation corpus by using the parser
to generate extremely large new resources for supertaggeing. | have also shown that these methods
provide significant benefits on another domain, Wikipedid, tevithout the cost of generating human
annotated data sets. These parsing performance gainswicibeiisupertagging accuracy decreases.

Despite extensive use of supertaggers to improve pardicgeaty there has been no comprehensive
study of the interaction between a supertagger and a pam&sent the first systematic exploration of
the relationship, show the potential benefits of understani, and demonstrate a novel algorithm for
optimising the parameters that define it.

| have constructed models that process newspapeB@ékifaster than previously, and Wikipedia
text 30% faster, without any loss in accuracy and without the aid afeegold standard resources in
either domain. This work will lead directly to improvemeimsa range of Natural Language Processing

tasks by enabling the use of far more parsed data.
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CHAPTER 1

Introduction

The aim of this project was to substantially improve the &fficy and accuracy of natural language
parsing, without the costly development of more gold steshdi@mta. This work falls within the field of
Natural Language ProcessingLf), a part of Artificial Intelligence research that focusesbuoiilding

systems that intelligently use the contents of documenitsenrin natural language.

Parsing is the process of analysing a set of tokens, sucheawdtds in a sentence, and extracting
syntactic structure. In some artificial languages, suchoagpater programming, care has been taken
in the design to ensure that each "sentence" has only onilgosgerpretation. But natural language
has evolved over time, and allows ambiguous sentences rihaioatext sensitive. Also the rules (or
grammar) that define natural language are not fixed or copiplebown. This makes parsing extremely
difficult.

This ambiguity and lack of a well-defined grammar are chagkenfor parsers — computer programs
designed to extract the syntactic structure of a sentencmtimral language. Accurate and efficient
parsing is critical in arange of areas. Examples includstipreanswering — to understand the content of
documents, computer human interaction — to understandahdé&nguage input from users, and machine

translation — to ensure the meaning of text is not lost indiegion.

The guestion-answering task involves constructing a sydt&t can understand a question posed in
natural language, search for an answer in a collection diimeats, and return the answer in an appro-
priate form (Lehnert, 1977). For example, given the questiwhen was the last time someone other
than the leader of the majority party in the House of Reptasers was Prime Minister of Australia?"
the system would be expected to give a response such as "©87bhe 1975 Constitutional Crisis".
By providing the syntactic structure of the question, parsdlow us to determine the constraints that

define our answer. If we have parsed our document collectmiam then determine which facts meet
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the constraints in the question. The primary reason foitdichuse of parsers in this field is that the time

required to parse a large document collection is far toceléwgoe feasible.

Another task where parsers are proving useful is automegitskation of text from one language to

another. Differences in grammar, idioms, vocabulary andpimalogy are just a few of the challenges

for machine translation systems. Using syntactic inforomeis a popular method of approaching these
problems, effectively using syntax to extract meaning dnah tre-expressing the meaning, rather than
trying to translate individual words or phrases (Broetral, 1990). Parsers are a crucial part of this
approach as they provide the syntactic structure of theeseat The problem with this approach is that
the performance of these statistical machine translatystems is highly dependent on the amount of

training data used. Faster parsers would enable the exqpboitof larger amounts of training data.

A more specific example of one of the applications of parsgtanaphora resolution’, determining
which entity a given pronoun refers to (Mitkov, 2002). Foample, in the sentence “The theory is
that Seymour is the chief designer of the Cray-32, and witidm it could not be completed.” the
word ‘him’ refers to ‘Seymour’ and the word ‘it’ refers to th€ray-32’. Clearly such understanding is
crucial for a system that aims to understand the meaning @irdents. People resolve the ambiguity
of which pronoun links to which proper noun through a comtiomaof grammatical and general world
knowledge, neither of which are as well developed in compaystems as they are in people. Computer
systems resolve the ambiguity by considering the syntatticcture of the sentence, as determined by a
parser (Geet al., 1998).

All of these tasks rely on the use of large data sets. The Sitteese sets is limited by the speed and
domain dependence of parsers. At between one and fifty sEsteuer second, state-of-the-art wide
coverage parsers are too slow to be feasibly used. To prtlvessstimated ten trillion words on the
English web would take over fifteen thousand years, and thkettye is even greater as more content
is constantly being added and large sections, such as Wikipare constantly changing. The number
of people using the web and the amount of activity online iooiously increasing, so we cannot rely
on increases in computing power to solve this problem. We aggorithmic solutions that improve the

efficiency of parsing.

Two possible approaches to improving efficiency are to ékpiore training data annotated by humans,

or to accept a decrease in accuracy in return for improveelspéeither of these options are satisfactory,
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as the first is extremely costly and domain dependent andettend simply trades speed for accuracy,

leaving a new problem.

The big idea that gives the most efficient parsers their sjgésipertagging’ (Bangalore and Joshi,
1999). The parsing process has a time complexity)¢f), wheren is the length of the sentence.

Supertagging, which has a time complexity@fn ), involves reducing the number of possibilities the
parser has to consider by assigning a role to each word iretitersce. Using the supertagger to effec-
tively do some of the parsers work leads to a considerableovement in efficiency, as the parser has
a considerably greater time complexity. In this work | takis idea further, passing more work to the

supertagger in a novel manner.

1.1 Contributions

In this work | improve the efficiency of a state-of-the-artural language parser by using the output
of the system to retrain one of the earlier stages. The fiegtist the system is to run the supertagger,
which generates tag sets for each word in the sentence. Therfhen selects one tag for each word
and forms a derivation. The core idea of this thesis is thataveimprove efficiency by reducing the set
the supertagger supplies for each word to be just the taghbaiarser would have used anyway. This
novel idea means we can obtain vast amounts of extra “gotdiatd” training data by using the parser
to annotate text. In fact, the resources developed as pdhisofvork were too large for the original

architecture of the system.

The original system took several hours to train on forty #and sentences of annotated data. Even if
extra data annotated by people were available, the trajpiagess would not have been able to scale
up as it would have hit memory constraints and taken far tag.lAs part of the 2009 Johns Hopkins
University Center for Language and Speech Processing Sumimekshop | implemented significant
changes to the C&C supertagger training process. As aafhdbe-art high performance system, the
code was highly optimised and complex. | implemented twagmron-based algorithms for model
estimation and parallelised the entire training processiiting feature extraction and model estimation.
These changes made it possible to train on vast amountsaf\déthout the parallelisatiomam usage
would have been a major bottleneck. Without the percepbased algorithms, training would have
been far too slow for large scale exploration. Models weme&d using the final system that had two

orders of magnitude more features, and others used threesafimagnitude more training data.
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To generate more training data | used the initial system teepall of Wikipedia, and all of the Wall
Street Journal data in the North American News Corpus. Afttering, described in Chapter 3, this
amounted t®6, 000,000 sentences from Wikipedia arid 349,000 from the Wall Street Journal, far
more than thet0,000 commonly used to construct supertagging models. This nde; dgnerated
by the parser, was used to retrain the supertagger. Byngaimiodels on progressively more data |
show that this training method can lead to significant improents in speed and accuracy. Not only is
performance improved on newspaper text, the traditionadaio for parser construction and evaluation,
but also on Wikipedia. Without any human annotated data jusadents to the parser | was able to
improve performance on the web text domain. In this way, atfedemonstrate that tags chosen by
the parser are what the supertagger should be aiming to ggody training on the parser’s output we
can improve performance not only in the original domain thespr was constructed for, but in other
domains. The results of this work were recently acceptegdidtication at the Australasian Language

Technology Workshop.

While the idea that the parser’s output is gold training datés supertagger is new, the idea of supertag-
ging itself has been in use for a decade. However, in this titaee has been no careful investigation of
the interaction between a parser and its supertagger. Thesuecessful systems use a series of levels to
balance speed and accuracy. The initial level is very distei, forcing the supertagger to provide only
a small set of possible tags. At this level the parser is mastef, as it has far fewer options to consider,
but also has relatively low coverage as many sentences decwite a set of tags that can be combined
to form a derivation. For these sentences the system draps ddevel, rerunning the supertagger with
looser restrictions, providing the parser larger tag setsraore flexibility. By repeating this process

several times coverage can be kept clos®y, while most sentences are parsed early on at high speed.

Determining the right set of levels is extremely difficultaashange to one will affect the sentences seen
at another. Without a clear picture of this interactionsthearameters have been chosen in an ad hoc
manner up until now, with only slight local optimisationspérformed the first systematic exploration
of this behaviour and propose one method of optimising spd@lk maintaining complete coverage.
Such an algorithm is needed because not only is determihaggtparameters difficult, they need to be

determined separately for every model.

Overall this work has made the parser 86V, faster on the Wall Street Journal aB% faster on
Wikipedia, without any loss in accuracy. Models were trdiméth orders of magnitude more data and

features than previously, and in similar or only slightynder periods of time. Finally, the analysis
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performed here is the first systematic investigation of #tealviour of the parser and supertagger. These
improvements will translate directly into improvementssiystems for question answering, machine
translation, anaphora resolution, and many other tasks i Without improving the speed of parsers

we would be severely crippling these systems, limiting ttaimum attainable performance.



CHAPTER 2

Literature Review

The work | have completed this year focuses on a particuf@eaof the Natural Language Processing
pipeline — supertagging, labelling words with a detailedadiption of their role in the sentence. This
idea has developed over the past fifteen years and is anahtegt of the parser | used, without which
it would be considerably slower. However, before explotiing previous work in this field there are a

few terms that need to be explained:

: The Penn Treebank
The ‘Penn Treebank®TB) (Marcuset al., 1993a) is a collection of documents annotated with
POStags and syntactic trees. It contains a range of documaeuttsytien it is mentioned here
| am generally referring to the Wall Street Journal sectiomiSich are based on newspaper
content from 1989.

: Hidden Markov Models
Hidden Markov Models Mms) are used when we can observe a series of emissions from
a system and are trying to predict the states that the systewedrthrough while making
those emissions. For supertagging we are effectively olrgpia system that emits words,
which we can see, and is moving through states correspomnaisgpertags, which we want to
determine. The method works by considering the completefgmtssible tags for each word
and two sets of probabilities, transition and emission ghilliies (Baum and Petrie, 1966).
Transition probabilities measure the chance of a particdaes of tags preceding the current
one. Emission probabilities measure the chance of therduserd being emitted if a particular
tag is chosen.

. The Viterbi Algorithm
One algorithm for usingiMms to choose tag sets is the Viterbi algorithm (Viterbi, 1967)
It moves through the sentence, determining the probadsilitif all the possible tags for the

current word and then using them, the transition and emigsiobabilities, to determine the
6
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probability of each possible tag for the next word. Once the ef the sentence is reached
the most probable tags can be assigned to the last word, angaths that led to them can be
traced back through the sentence to determine the setsofdaghe other words. A more
sophisticated alternative is the Forward-Backward atfjorj so called because once reaching
the end of the sentence it repeats the process in the othemtidit. The set of transition
probabilities are changed to be based on the words thatfallgiven word while the emission

probabilities remain the same.

2.1 Grammars

Two main classes of grammars have been used to try to undénstdural language, phrasal and lex-
icalised grammars. Phrasal grammars generally define d sataif labels that capture the syntactic
behaviour of a word in a sentence, such as noun and adverbhemdise a large set of rules to define
how the words interact. These rules can then be used to nohstiphrase structure tree in which the
leaves are the words and the internal nodes are applicatfontes. Lexicalised grammars take a differ-
ent approach, providing a much larger set of labelsategories and only a few rules. The categories
provide a more detailed description of a word’s purpose ieraece, leaving less work for the rules

that determine how categories combined to form the parse tre

One example of a lexicalised grammar formalism is Combiyafategorial GrammaicG) (Steedman,
2000). Inccathere are two types of categories. The first typeadoenicand are one of S, N, NP, PP,
for clauses, nouns, noun phrases and prepositional phrasgsctively. The second type of category
is complex and contains two parts, an argument and a resrnipted by either ‘Result / Argument’
or ‘Result \ Argument’. The slashes indicate whether theuftrgnt is expected to lie to the right or
left respectively, and the result and argument are categdhemselves (atomic or complex). These
categories are then combined according to seven rulesafdrand backward application, forward and
backward composition, backward crossed substitutiorg tgjsing and coordination, some of which are

demonstrated below.

Figure 2.1 presents two examples of sentences and ¢lka@rderivations. In both examples the line
directly beneath the words contains the categories that a&signed to each word, NP far(S\NP)/NP
for at e and so on. The lines that follow show a series of rule apjtinat building up the parse tree.

These examples demonstrate three types of rules. The litlegw sign at the end indicate forward
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application, in which a complex category combines with thtegory to its right. This is possible when
the complex category is of the form ‘Result / Argument’ arsldrgument is the same as the tag to
its right, such as in the first derivation when the (S\NP)/Negory forat e combines with the NP
category forpi zza to produce an S\NP category. The lines withcasign at the end are showing
backward application, which is the same idea, but in the sipg@direction. This can be seen in the last
step of each example, when the S\NP category combines vétNEhcategory to its left to form an S

category.

Note in particular the change of tag fai t h in the two examples and its affect on the subsequent
rule applications. In the first case the wokds h cut | ery combine withat e pi zza, as shown by
the combination of the S\NP and (S\NP)\(S\NP) categoridsis Makes sense since the wordg h

cut | ery are adding extra information to the vexbe. However, in the second caset h anchovi es

is combined wittpi zza to form a single noun phrase before being combined atith Again, this make
sense, sincai t h anchovi es is describing a property @fi zza. Now consider replacingnchovi es

with another word, such aof f ee, in which case the correct analysis would be the first onepities
the two words being similar in the sense that they are bothrna & food. People are able to distinguish
between these two cases through the use of extra knowledge thie regular toppings on pizza, but in
general a parser does not have such extra knowledge to d@w Wipis ambiguity, called prepositional

phrase attachment, is one of the reasons parsing is so Hifficu

I ate pizza with cutlery
NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
S\NP (S\NP)\(5\NP)
S\NP
S
I ate pizza with anchovies
NP (S\NP)/NP NP (NP\NP)/NP NP
NP\NP
NP
S\NP g
S

FIGURE 2.1: Examplecca derivations for two sentences.

Thecca parser used in this work is the C&C parser (Clark and Curr@f322007b). The C&C parser
applies labels to words using a variant of the Viterbi aldpon for Hidden Markov Models, and then

determines the correct series of rules to apply through fisheocky chart parsing algorithm and
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Accuracy Speed
Parser Precision Recall F-score Time (min.) Sentencesepend
Charniak 89.5% 89.6% 89.5% 28 14
Collins 88.3% 88.1% 88.2% 45 0.9
Sagae 87.5% 87.6% 87.5% 11 3.6
Hockenmaier 84.3% 84.6% 84.4% Not Given Not Given
CCG 88.3% 87.0% 87.6% 1.9 21.0

TABLE 2.1: Performance comparison over section 23 of the Penrban&gor a range
of parsers (Clark and Curran, 2007b; Sagae and Lavie, 20@&kdthmaier, 2003). Pre-
cision and recall are calculated over sentences receivipgrse only. The first three
parsers are evaluated on accuracy of labeled constituetie iPenn Treebank, while
the last two are evaluated on predicate-argument depeiedeincccG-bank, acce
annotated corpus that uses the same base text as the Pebarikiee

dynamic programming. The results in Table 2.1 demonsttaeit is a particularly efficient state-of-

the-art parser.

As Figure 2.1 demonstrates, for a given word, the choice@faighly dependant on its context, and
may require world knowledge (such as the regular toppingpifizas). Without this knowledge, parsers
must consider all possible parses, and since this could/ appvery word in the sentence, it leads to
a time complexity for parsing of at leagt(n?), and in the case atcg, O(n®). In most applications
time is an important constraint, meaning that at currenedpemost parsers cannot feasibly be used,
regardless of how accurate they are. Consider the speeds #ndable 2.1. The most accurate parsers
are able to parse approximately one sentence per seconasApeed a typical novel containing 5,000
sentences on average 20 words long, would take over 80 hoyrarse. Clearly, to parse the entire
English canon using one of these parsers would take an ystabée amount of time, let alone parsing

a corpus such as Wikipedia or working online, respondingstrsi

For ccaGthe parsing process is preceded by ‘Supertagging’, wheraitial categories are assigned to
each word, such as the tag (S\ NP)/NP for the waxrd in Figure 2.1. However, before this occurs
there is another stage, Part of Speeetd tagging. Postags are the familiar classes of words taught
in primary school - nouns, verbs, adjectives, and so on. Etehis stage there is some degree of
confusion, as many words are included in multiple classsash as the word ‘tag’, which can be used
as a noun (the correct tag is noun), or a verb (the prograncuwiitectly tag all verbs). Determining the

correct tag for a given word requires examination of its egnhtNote that in Figure 2.1 the wovd t h

would be labelled with the sanmostag, preposition, in both cases.
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Supertagging can improve the speed of parsers by decraasimgnge of possible categories for each
word in the sentence. As in Part of Speech tagging, this ieaeti by considering a lexicon of tags each
word could be assigned and reducing each set based on tbersding context. The difference is that
the sets obPostags used in phrasal grammars are orders of magnitude sthaliethe sets of supertags

used in lexicalised grammars.

By reducing the number of tags to consider for each word, rsaipgers leave parsers with far fewer
possible derivations to consider. In the ideal case, wharpartagger is able to select a single tag for
each word, the parser only needs to determine how to comb@¢ags to form a valid parse. The
syntactic content of supertags has led to the descriptilmmo'st parsing’ (Joshi and Bangalore, 1994)

for supertagging because of the great reduction it causée irange of possible parses.

The structure of supertaggers is a balance between pericamend complexity. If the tagger is too
simple its performance will suffer. If it uses greater imf@tion and more complex algorithms it will be
slower, effectively moving the time cost of parsing from giaser to the tagger, without an overall im-
provement. Most supertaggers use algorithms with comyléx{n) and only consider a small window
around the word being tagged. Commonly used features ia¢hml surrounding words, thelostags

and, if already assigned, their supertags. This combinatfextremely efficient algorithms and local

context leads to a great saving of work for parsers, at vty Bxtra cost.

The actual tagging process can be performed in a variety géwhitially supertaggers were used to
choose a single tag, specifically the most common tag for irengvord in the given context in the
training data. This has the disadvantage that if the setgsf gdven does not lead to a valid parse, the
parser is unable to consider alternatives. The alterngtraviding multiple possible tags, has its own
problems. The more tags that are assigned, the greaterithigenwf possible derivations that the parser
has to consider and the slower it will be. However, if the nemtdif tags assigned is decreased too much
we return to our original problem of accuracy losses. Stglka balance between speed and accuracy is
difficult and ultimately it would be preferable to improvepgutagging so that only a small set is required

to attain high accuracy.

As with most tasks in Natural Language Processing, theitrgudiata is a crucial part of model develop-
ment, and the available gold-standard annotated dataitetimOne way of overcoming this challenge,

which has been successfully applied to classifiers, is ‘seipervised training’. This term covers a
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range of methods that all involve using a system to automltitabel more data, expanding the train-
ing dataset. However, since the amount of unlabelled dati#able is orders of magnitude larger than
the amount of labelled data, these methods require a sealdh performance structure to be utilised

effectively.

2.2 Supertagging

Super-tags were first proposed by Joshi and Bangalore (£89%)e equivalent abostags for Lexi-
calized Tree-Adjoining GrammarxAaG). As previously mentioned, the difference betweerstags
and supertags is that the latter contain much more detajlgdctic information. To provide this extra
information the sets of supertags must be much larger. ysaaupertag set contains on the order of
hundreds of tags. One automatically extracted set of tagstia had 3964 tags (Chest al,, 2002).
Most Postag sets contain less than fifty possible tags. For instahed?enn Treebank uses only thirty-
five (Marcuset al.,, 1993b).

When supertagging, even once the set of tags available ébrward is cut down to those observed in
training data or defined by a lexicon, the set of tags thatdcbel assigned to each word is still large.
The first supertaggers selected a single tag for each woetbas its local context. To handle data
sparseness words were not used; insteadatagger was run first and n-grams of surroundirms
tags were used to define the context of a word (Joshi and Banegdl994). The examples in Figure 2.1
clearly demonstrate that this solution to the data spassem®blem will lead to mistakes, as this model
would see the same setebstags for each sentence, and therefore labeh incorrectly in one of the

cases.

To experiment with a supertagger Chandrasekar and Baegél®97a) incorporated an n-gram su-
pertagger into an information retrieval system. The systers designed to identify sentences related to
‘appointments’, such as ‘John Smith was appointed chairafidine board’. The supertagger was used
to identify noun and verb chunks in each sentence. These wsekto form ‘augmented patterns’ for
relevant and irrelevant examples. The same method wasddplieach sentence in the test set and if
a pattern was observed that had been identified duringnigitiie sentence was classified accordingly.
This system was also used to perform a comparison betmesrags and super tags. Tir®stags

were used to form similar ‘augmented patterns’ and testdtiénsame way. As expected, the extra
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information provided in the supertags led to less genextatis, reflected by fewer incorrect identifica-
tions of appointments, but also more instances of appoimisrigeing missed. Overall supertags were
demonstrated to be more effective (Chandrasekar and BamgaP97c). Supertagging was slower than
POStagging by approximately a factor of two, but this is still chufaster than full parsing, and the
supertagger always returns an answer, where as a parseramnbg able to determine a parse in some

cases.

This system was also used to consider how much context iseffestive (Chandrasekar and Bangalore,
1997b). By varying the amount of context used between onef@rdwords either side of the word
being considered it was shown that specifying more contagradves precision, since the supertagger
is more certain about the context being considered, buiedses recall as data sparseness becomes a
greater issue. Based on F-Score measurements Chandrasdli&angalore found that one or two words
either side was the most effective feature set. These ddusmmg fit with the intuitive idea that a more

specifically defined context will leader to greater certgibtit less generalisation.

One issue for assigning a single tag is that if it does not teaa valid parse the parser has no other
alternatives to consider. Chenal. (1999) discussed the possibility of assigning a set of tagsiti-
tagging’, as well as experimenting with long distance fezdbased on preceding phrase heads. Two
methods for defining classes of tags were considered; dohssed classes, and confusion classes.
Context based classes were defined by sets of tags that wezeved in the presence of the same set
of features in the training data. Confusion classes weraeldfdy running the supertagger on a small,

annotated data set and placing tags that were assignedeattpinto the same class as the true tag.

Assigning multiple tags to each word raises the questiontadtwrder the tags should be considered.
Chenet al. (2002) approached this question by using a trigram baseertsgger to choose multiple
tags, and the Viterbi algorithm to determine the most likebguence. Then, instead of associating
each word with a single tag from the most likely path, eachdweas associated with thetags that
had the highest prefix probabilities. First the system waduated without re-ranking the tag sets
by passing them to a parser and counting the number of sesteruccessfully parsed. As expected,
increasing the size of the tag sets led to an increase in fhertaigger’s accuracy and the number of
parsed sentences. However, when more than four tags wagaedparsing was rendered infeasible due
to time constraints. After establishing the benefits of mam®urate supertagging, Chen et al investigated

re-ranking based on a range of features, demonstratingoiraprents of oveii%. Clearly, the more
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accurate the set of supertags provided the higher coverdigeewbut if this improvement is achieved

by supplying more tags it incurs a speed penalty.

The effect of supertagging on parsing efficiency demoresréat lexical ambiguity is an important
factor in parsing complexity (Sarkat al., 2000). However, this method of increasing efficiency often
comes at a cost of coverage and Sarkar et al showed that th@egof these supertaggers on automat-

ically extracted . TAG grammars is too low for successful integration into a fullgea.

2.2.1 Supertagging for Combinatory Categorial Grammar

Supertagging was first applied to Combinatory Categorian@nar €cc) by Clark (2002), who per-
formed comparisons witlrOSs taggers and.TAG supertaggers. Rather than using a Hidden Markov
Model, the supertagger determined the probability of eamtuweing assigned each possible tag through
Conditional Maximum Entropy Modeling. This method was drmdecause it provides greater flexi-
bility when adjusting the feature set and makes it easieefmé a multi-tagger. Rather than defining
a fixed number of tags to be produced per word the supertagglerdied all tags whose probabilities
were within some factoy, of the highest probability category. Similar settings evapplied to anTAG
supertagger (Cheet al, 1999) and theccc supertagger was shown to perform worse for single tag-
ging, but better for multi-tagging. As farrAG supertaggers, the use of supertaggingdoc improved

the speed of the parser, with a greater improvement for smal sets, though with a slight loss in

coverage.

The weights for features in the maximum entropy model fordhe supertagger were estimated using
Generalised lterative Scalingis) (Darroch and Ratcliff, 1972), a method chosen becauseaitvisry
simple algorithm that often outperforms more efficient alfpms in practise. Curran and Clark (2003)
showed that a correction feature was not required to gusgatdnvergence, even when the sum of the
feature values for each event is not constant. Addition&llwas shown that by applying a Gaussian
prior instead of a frequency cutoff additional features barincorporated without causing over-fitting.
This is useful because the extra features may allow the &g to be more confident in the tags

chosen, and possibly lead to a reduction in the number oftedssigned to each word.

By tightly integrating a supertagger with@cG parser, Clark and Curran (2004) were able to achieve
great improvements in speed without sacrificing accurackie @rucial development that made this

possible was the use of feedback between the parser andagigmrduring parsing on both training
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Supertagger Accuracy Evaluation Corpus Av. Tag Set Size
Joshi and Bangalore (1994) 77.3% 100 sentences fromw#ie 1
Chandrasekar and Bangalore (1997c) 89.4% 20,000 wordstfremsJ 1
Bangalore (1997) 92.2% 50,000 words from theJ 1
Chenet al. (2002) 82.99% Section 22 of tlrers 1
Chenet al. (2002) 90.42% Section 22 of tlrers 2
Chenet al. (2002) 94.19% Section 22 of tlrers 8
CCG, Clark (2002) 90.5% Section 23 aitG-bank 1
CCg, Clark and Curran (2004) 97.0% Section 0Qafc-bank 1.4
CCgG, Clark and Curran (2004) 98.5% Section 0Qafc-bank 2.9
CCgG, Clark and Curran (2004) 99.1% Section 0Qafc-bank 21.9

TABLE 2.2: Comparison of supertagger accuracy, including a rahgettings for multitaggers.

and test data. To improve efficiency only local features wesed, eliminating the need for the Viterbi
algorithm. During training the supertagger was used tocsaeset of plausible but incorrect tags, to
which the correct tag was added, producing a set for the psirsdar to those that would be produced
by the supertagger on unseen data. When parsing unseermdatapertagger initially used a large
value, and while the parser was unable to determine a paselie was gradually decreased, expanding
the tag sets. These methods increased the speed of the C&&2 pgira factor of seventy-six, making it
an order of magnitude faster than comparable systems. As Zahshows, the C&C (2004) supertagger

produced much more accurate tag sets for a range of tag est siz

Supertagging has subsequently been combined with atfudl parser (Sarkar, 2007). The influence of
supertagging on parsing efficiency was again demonstratetithe use of co-training the supertagger

on the parser’s output was shown to be more effective tharegnsupervised training methods.

2.3 Summary

Supertaggers have been used effectively in a rangemtasks, such as information retrieval and pars-
ing. By reducing the set of possible lexical categories &mheword in a sentence they provide a crucial
source of information that can dramatically improve efficg While they are not perfect and in some
cases will provide incorrect tags, through multi-taggingl dight integration a balance of speed and

accuracy can be achieved that is beneficial overall.

However, accurate supertagging is only possible when pieiltags are supplied, and every extra tag that

is assigned as a possibility increases the number of diengthe parser must consider. Any decrease
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in ambiguity should translate directly to an increase ineshdut simply supplying fewer tags using

current models would lead to a decrease in accuracy. Insteashould aim to reduce the number of
tags provided that the parser does not use, ie only suppbymegtag for each word — the tag that the

parser would have used anyway.



CHAPTER 3

Evaluation

Before describing the experiments performed it is impdrtarestablish the baseline system and the
methods that will be used to evaluate all changes. This ehado describes the development of the

extra training data that is used throughout.

3.1 Data

This work has used two forms of data, newspaper text and web3pecifically, | have used 5.4 million
sentences from the Wall Street Journais@) between 1987 and 1996 in the North American News
Corpus ANC), and 26 million sentences from a 2009 dump of the Englistiaeof Wikipedia. The
first set was chosen as the standard parser evaluationsréoemmex on newspaper text from thesa,
Wikipedia was chosen because web text, and Wikipedia incpéat, have recently become very popular
resources imLP. Also, while Wikipedia and newspaper text are definitelyatiént, Wikipedia is still
predominantly made up of well formed sentences, as opposadjteat deal of other web text, making

it a sensible first step towards parsing web text.

3.1.1 Training

The standard corpus for parser training and evaluation ésPiénn Treebankr(B) (Marcuset al.,
1993b), a collection of documents annotated withtstags and syntactic trees. | have used CCGBank
(Hockenmaier and Steedman, 2001), a translation of thekétiag structure of the Penn Treebank to
the cca formalism (Steedman, 2000). For training | have used se€@21, which consist d39, 604

sentences originally from the 1988sJ No such corpus was available for Wikipedia.

To produce more training data | automatically labelled #spurces described above. The raw text was

tokenised using thelLTK tokeniser (Birdet al,, 2009), and parsed using the C&C parser and models

16
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version 1.02. To ensure no overlap occurred between our automaticatlglled wsJ data and the
CCGBank data all of the 1989 data in thenc was excluded. For the Wikipedia data | applied a set of

simple rules to exclude instances as described below:

e Atleast6 tokens
List entries - "Discography."
e At most125 tokens
Entire lists that appear as a single sentence
e At least one word must start with a lowercase letter
Titles - "The Davis Chinese Christian Church."
e The first character must be a letter
Strange data artifacts - ";CD Two."
e The first token cannot start with ‘Category’
Structure information - "Category:WikiProject New Hampsharticles."
e The last three tokens cannot form "refer to ."

Disambiguation page headings - "... may refer to ." and an. refer to ."
The automatically labelled data from both corpora was dtsoeal slightly due to parser limitations:

e Removed non-printable characters
For example, "... for a cost of \xc2\xa31.50." became "r.afoost of 1.50."
e Translated from utf-8 to ASCII

e Replaced all vertical bars with colons as vertical bars aeslas separators in the parser input

And finally, all sentences longer thai0 tokens were excluded from theNC data. The sentences this

affected were generally long lists of scores or stock madsilts.

3.1.2 Testing

For thewsJl used section 00 of CCGBank to evaluate accuracy. The atimmain CCGBank include
gold standard grammatical relations for all sentences, elsas the lexical category for each token.
These 1,913 sentences allowed us to measure the overaljectarparser performance, as well as

supertagging performance. For Wikipedia | used a recergieldped set 0800 sentences annotated

1http://svn.ask.it.usyd.edu.au/trac/candc
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with grammatical relations anth00 sentences labelled with lexical categories.(Cletrkal., 2009) The
wsJand Wikipedia—300 sets contadi422 and6696 word—category pairs respectively. It is also worth
noting that these sets were created by running the superaipgn manually correcting the answers,

which may have introduced some bias in favour of the supgetag

To measure speed accurately | needed much larger sets.sidet@ 000 sentences from the 1988sJ
in the NANC for these measurements, excluding them from the trainite disscribed above. Similarly,

10, 000 sentences of Wikipedia data were excluded from the traisgigand used for speed evaluation.

3.2 Metrics

Before considering the metrics used it is important to ustded the concept of ‘beta levels’. When
choosing the tags to assign the C&C supertagger determinaskang for the possible tags for each
word. Assigning only the top tag does not lead to high enowghiracy to enable wide coverage parsing.
Rather than assigning a fixed number of tags, the top threexomple, the C&C supertagger assigns a
variable number based on a probability distribution exgiresconfidence. Specifically, every tag that is
within a certain fraction, beta, of the most likely tag isluged. This distribution varies for every word
and its context, so the number of categories assigned toveachby the supertagger depends heavily

on the beta level used.

This presents a problem because the more categories thadsagaed, the higher the tagging accuracy,
and the appropriate beta levels for a model depend highllhemptoperties of its weight distribution.

To fairly compare the models presented here | have used shedeto determine values for the five
beta levels that will lead each model to produce the same auwibtags per word on average. The
values are tuned on section 00 of theJ, using the C&C parser and models 1.0 to determine reference

ambiguities. These beta levels are then used for all testisiding Wikipedia.

For the models trained on Wikipedia data the change in arithigetween thenvsJiand Wikipedia is
considerably smaller than for the reference model. | chagemre-tune on a sample of Wikipedia

sentences as this would mean | am effectively using two aessbf each model during evaluation.

For accuracy three standard metrics are used, precisical] esnd F-score. These are defined in terms

of:

e True Positives, instances that occur in the system outplittantrue output
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e False Positives, instances that occur in the system ouipuhot the true output
e True Negatives, instances that did not occur in the systepubor the true output
e False Negatives, instances that did not occur in the systgputy but did occur in the true

output

Procisi TruePositive (3.1)
recision = .
TruePositive + FalsePositive

TruePositive
Recall = 3.2
eea TruePositive + FalseNegative (3.2)

2 x Precision * Recall
F—s = 3.3
seore Precision + Recall (3-3)

The F-scores given are calculated based on comparisong@ldistandard labelled dependencies. The
category accuracies are for the first beta level only, andra vgoconsidered correctly tagged if any of

the assigned categories is correct.

Parsing speeds were calculated using the parser’s intiamets, measuring the overall parse time. As
the amount of training data scales up, so too does the tirakdstto train models. One of the benefits of
the methods described in the following chapter is that tla#ytcain considerably faster, to demonstrate
these benefits | measured the amount of time spent trainingugamodels. All speed measurements
were performed using a 3GHz Intel Core 2 Duo CPU, and 4Gof.

3.2.1 Significance Testing

Statistical significance testing was performed to deteerifinbhanges in model performance were mean-
ingful or not. The test applied reports whether two systemasponses are drawn from the same distri-

bution, where scores 0f05 and lower are considered significant (Chinchor, 1992).

The test works by taking two sets of output on the test set andamly interchanging the entries ten
thousand times, counting whether the difference in a givetrimbetween the two sets has increased. If

the two sets of responses are from different distributiosgdomly mixing them should bring all of the
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Data Word Accuracy (%) Sentence Accuracy (%)

wsJSection 00 96.49 51.23
wsJSection 02-21 97.96 67.61
wsJSection 23 96.90 55.01
Wikipedia 300 98.7 79.3
Wikipedia 1000 97.86 75.50

TABLE 3.1: Accuracy of the C&Q0ostagger.

metrics closer together, as the two sets of results movente sistermediate distribution. If the two sets
are from the same distribution, then the change could beherdirection due to random variations. If

the change is observed to increase less #¥amf the time the distributions are considered diffefent

3.3 Baseline Performance

The baseline system is the C&C parser, revisis®0®. The supertagging model used was trained using
section 02-21 of CCGBank. It was estimated usingghesalgorithm (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) ov#l0 iterations.

Before considering the performance of the baseline suggetaand parser it is worth considering the
C&C postagger. Theeostags assigned to the sentence form more than half of therésatised by the
supertagger, and so their accuracy is crucial. In Table 8 tam see that the tag accuracy is quite high,

but nevertheless, a large proportion of sentences corntééast one error.

The default settings for the parser include five beta levets@rresponding tag dictionary cutoffs, as
shown in Table 3.2. The first set of ambiguity measuremerag/sthere are the values that the rest of
our models are tuned to. Note the decrease in accuracy whgimgaWikipedia, despite an increase
in the number of categories assigned per word (and henceaised chances of supplying the correct
category). This is expected, as the supertagger was tramegwspaper text, not Wikipedia. But it is

an important fact, since it demonstrates the decrease fiorpgnce when switching domains.

From Table 3.3 we can make several important observatioinst, fhe influence oPostagging accu-

racy is made absolutely clear by the drops in F-scorzhfnd1.7 percent, despite much smaller drops

2The actual script used is based on David Vadas’ Python imghéation of
http://www.cis.upenn.edu/ dbikel/software.html#comatar

SRevision number refers to the svn repository at http:/&skit.usyd.edu.au/candc/trunk
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wsJ Wikipedia
Ambiguity  Accuracy (%)  Ambiguity  Accuracy (%)
Beta Dict Cutoff (Cats/Word) Word Sentence (Cats/Word) &VoGentence

0.075 20 1.270 96.07 59.54 1.314 95.37 49.33
0.03 20 1.429 96.76  64.45 1511 95.82 54.00
0.01 20 1.718 97.36 69.21 1.853 96.58 57.67

0.005 20 1.983 97.59 70.88 2.178 96.85 59.67

0.001 150 3.576 98.44 78.78 4.111 98.0 70.0

TABLE 3.2: Baseline supertagging accuracy usiagstags produced by the C&Eostagger.

in supertagging accuracykb and0.9 percent respectively. We can also observe the importanse-of
pertagging, as both tests in which gold standard supertegsravided have f-scores oved%. Clearly

improvements in theostagger and supertagger can translate into significant gaperser accuracy.

However, the most important observation for this work esao the speed measurements. In the first
two rows of each section the parser and supertagger aredtiteg, with the supertagger supplying
limited tag sets and then gradually adding more tags if thegpacannot find a spanning analysis. Even
at the first level the number of tags assigned is arauBdleaving the parser with many combinations
of tags to consider. When the number of tags per word is retitae, in the bottom two rows of each
section, the system is considerably faster. This is bedteggarser has less work to do in the first place,
since there is only one combination of tags to work with, andesthere are no other ambiguity levels

to consider it never has to try parsing a sentence multiplegibefore finding a derivation or giving up.

This clearly indicates that if we can reduce the number of @& word that the supertagger supplies
we will obtain an increase in speed. The third row of eachiaecepresents an oracle supertagger that
can perfectly assign tags. The fourth row represents a tgggr that can second-guess the parser,
producing the set of tags it would have used anyway. One mafawsrking towards either of these
systems is to use more data when generating our supertaggidgl. For the oracle supertagger we
would need more gold standard data, which is expensive amedonsuming to generate. Meanwhile
for the supertagger that second-guesses the parser we meediata labelled with the parser’s output,
something we can easily generate by simply running the parstarge amounts of text. If we can use
this data to construct better models of what the parser wemtsould improve parsing speed by a factor

of between three and five.
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Supertag Accuracy Ambiguity  F-score Speed
(%) (cats /word) (%) (sent/ sec)
Data Single Multiple Eval Data 10k
wsJSection 00
Goldpostags 92.59 97.34 1.27 85.79 68 *
Auto postags 91.14 96.07 1.27 83.41 68 48.54
Gold Supertags  n/a n/a 1 96.81 250 *
Parser Supertags 92.07 n/a 1 83.41 230 290.2
Wiki Sent 300
Goldpostags 90.7 96.4 1.3 84.2 58 *
Auto postags 89.8 954 1.3 82.5 58 46.31
Gold Supertags  n/a n/a 1 91.0 300 *
Parser Supertags 92.0 n/a 1 82.6 280 253.2
TABLE 3.3: Baseline model performance.
3.4 Summary

The most important aspect of this chapter is the illustratid potential speed improvements. The
baseline system has an F-score38f41 on thewsJ and82.5 on Wikipedia, and can process.54
sentences of thevsJ per second, and6.31 sentences of Wikipedia per second. If the supertagger
could cut down the tag sets it currently supplies to the ogepter word that the parser actually uses
in the final derivation, the system would process sentenaa® tfan five times faster. This clearly
demonstrates that successfully training the supertaggpravide what the parser wants will provide

significant efficiency improvements.



CHAPTER 4

Algorithms

A range of methods are used by supertaggers to choose thaf s&gs to assign to each word. The two
main areas of variation are the set of features used, and ddelrthat determines the implications of
those features. To enable the use of greater numbers of rophéstcated features supertaggers need
to become scalable. More features also mean more paran@teesoptimised in our models, so our
optimisation algorithms need to be efficient. Tackling thallenge of algorithms that are more efficient,

but just as accurate, is the focus of this chapter.

4.1 Background

The C&C supertagger selects tags using a Hidden Markov Marblthe Viterbi algorithm, which are

described at the start of Chapter 2. One issue not dealt withait section was how the transition and
emission probabilities are determined. These values anelsow defined by the language and domain
being considered, but are unknown to us. The methods deddpilow provide a means of estimating

them.

4.1.1 Maximum Entropy Modeling

The general problem of how to use several different protiglelstimates to form one that captures
them all has been extensively studied by statisticians.rmi&@dmum entropy model proposed by Jaynes
(1957) works by reformulating the estimates as constraintthe expectation, or average, of various
functions. Then, the probability distribution that sagsfall these constraints and has the highest entropy

is selected as the new model.

One of the first uses of maximum entropy modelingiire was by Lauet al. (1993) for language model-

ing. The parameters of the model were estimated using ther@lgsed Iterative Scaling methodif),

23
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and the result was better than other state of the art methdids time. Perhaps the most well known use
of these models imLP is by Ratnaparkhi (1996) in a state of the mettstagger. The core idea of this
work was to make better use of contextual information, mauksiple by the flexibility of maximum
entropy modelling. Theostagger produced had an accuracyd6f5% on a subset of the Wall Street
Journal section of the Penn Treebank, was flexible and onlyined a lexicon of possibleostags for
each word. Subsequently maximum entropy models have been incogmbiato a range of systems,

such as the supertaggers described previously (Curran larki 2003).

However, McCallum and Pereira (2001) highlighted what tbaljfed thelabel bias problenfor max-
imum entropy Markov models. The concept behind this probiethat decisions made in one state,
such as when assigningea stag to a word, are not influenced by the choices to follow. # &lgo been
shown that variants of iterative scaling perform quite poaompared to general function optimisa-
tion algorithms such as the conjugate gradient method (MaRD02). Despite these issues, maximum

entropy modeling has proved very effective for estimatiregghits for supertagging models.

4.1.2 Perceptrons

Perceptrons are another means of determining values thdiecased as probabilities imMms. They
were first proposed as a model for human learning (Rosenf@®8), based on investigation of the
structure of the brain and identification of its similaritythe structure of computers. Since then percep-
trons have been extensively studied as a simple machingdgaalgorithm for classification of linearly

separable data.

Recently, a variant of perceptrons was proposed by Freutideahapire (1999) which stores all predic-
tion vectors considered during training, along with a caafrthe steps they were maintained for. This
count is then used as a weight for the vector, on the assumibtéd better vectors will last longer since
they misclassify fewer instances. These weighted vecterthan combined in a weighted majority vote
to create the final prediction vector. The result is a simp#sy to implement algorithm, which was

shown to be competitive with Support Vector Machfnas a handwritten digit classification task.

Collins (2002) showed that these methods could be applitedks inNLP, such asvP Chunking andos
tagging, with better performance than maximum entropy nsodpecifically, using a voted perceptron

and trigram features for training, a Viterbi based systethdraF-score 0$3.53% for NP Chunking and

Iwithout such a lexicon accuracy was reducedy2%
2An influential machine learning algorithm that been showheoery effective.
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_ min; % Zr | M, + 7,7 ||%
subject to: (1) <6, e forr=1,....k

@37 =0
FIGURE 4.1: Equations for thelRA update scheme.

an error rate 0£.93% for Postagging, compared 2.65% and3.28% respectively for a similar system
trained with a maximum entropy model. Interestingly, thecpptron model also achieved its best result
after far fewer iterations, between six and forty, as opgdsdhe one hundred to two hundred required

for the maximum entropy model.

This perceptron method was applied to parsing by CollinsRwoark (2004), using an incremental beam
search parser, which works by developing a set of linearttaings, one for each incorrect parse in the
training data. The parser performed similarly to anothexedzon a generative model, with F-scores of
87.8% for data with gold standardostags, an®6.6% when tags were generated by a tagger. Similar
methods were recently applied to the C&C parser (Clark armda@iy 2007a), leading to performance
comparable to a log-linear model, but with much lower systeguirements. Importantly, since the
perceptron based model is on-line, the final model difféghly depending on the order of the training

data, but Clark and Curran (2007a) showed that this did riloteince the performance of the parser.

4.1.3 Margin Infused Relaxed Algorithm

The Margin Infused Relaxed Algorithmu(RA) also follows the standard multi-class perceptron algo-
rithm, but applies a different update method. The inteni®to make the smallest possible change
to the weights such that the correct class would be produgea $pecified margin. As defined by

Crammer and Singer (2003), the update function adjusts &ights by a set of values satisfying:

WhereT is the update to be madé/ is the matrix of weightsz! is the value of the featurd; is the
number of classes, ardis the Dirac delta function, equal oonly whenr is the index of the correct

classification.

4.1.4 The C&C Parser and Supertagger

The C&C parser uses thexy algorithm to construct the ‘chart’, an efficient represéotaof all pos-
sible analyses for a sentence. The most probable derivegtifound using the Viterbi algorithm and

probabilities are calculated based on a conditional Ingar model.
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The supertagger uses a maximum entropy based model to assigrof possible lexical categories to
each word in the sentence. The baseline system estimatedoithel using eithecis or BFGsand ran

on only one processor.

If the supertagger assigns only one category to each wadacituracy is too low to be effectively
incorporated into a parser. By multitagging we can make tipegdagger more accurate, but at the cost
of speed as the parser must consider larger sets of possitelgocies. The beta levels define cutoffs
for multitagging based on the probabilities from the maximentropy model. If the parser is unable
to form a spanning analysis the beta level is decreased ansuttertagger is rerun. The exact values
of these levels greatly influences parsing accuracy anddsp&ecuracy is decreased in two ways: by
not providing enough categories at any level, leading togamsing analysis; or by providing too many,

causing an ‘explosion’ in the chatt.

The initial feature set used for tagging included unigrarhs@stags and words and bigrams pbs
tags, all in a five word window surrounding the word being &djgThe weights for these features were
estimated by either Generalised Iterative Scaliags) (Darroch and Ratcliff, 1972) or the Broyden-
Fletcher-Goldfarb—Shanno methoelFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970).

4.2 Implementation

4.2.1 Averaged Perceptron

The standard multi-class perceptron maintains a matrixedgkts, containing a row for each attribute
and a column for each class. The weight in ¢e]l-) indicates how strongly related the attributand
the class: are. When all attributes are binary valued the class is aadigy ignoring all attributes that
do not occur and determining which column has the greatest Burring training the class that column
corresponds to is compared to the true class and if it is corme change is made. If the predicted
class is incorrect the weights are updated by subtradtivérom all weights for the predicted class and
adding1.0 to all weights for the true class. The averaged perceptseh follows the same algorithm,

but returns the average of the weight matrix over the coursmiaing, rather than its final state.

3An ‘explosion’ is when the chart exceeds a particular sizgctvfor this work was set t800, 000 total categories (ie the
initial supertags and all the intermediate categoriesdtapart of the derivation).
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The reason the average is more effective than the final valtleat the perceptron only converges for
linearly separable data, which our data is not. This meaatsthie perceptron will jump between states,
optimising for the most recent set of observations, patdéiytat the cost of accuracy on a large set
of previous observations. Therefore the final state of thregmron is highly dependent on the most
recently observed training instances. By taking the averda@ll states we will be creating a state that

is most similar to the states that are most often correct.

4.2.2 Margin Infused Relaxed Algorithm

We have applied a slight variation of terRA update method that can be expressed as folfows

marginJer Pw—tw )
| features| (14 ——)

Dabove

min(max

Wheremargin is the absolute difference that will be created betweenrtie dlassification and those
that previously ranked above it, the sum is over all featysgsandt,, are the weights associated with
the featuref for the predicted and true classes respectiiglyutures| is the number of active features,
and nqpove IS the number of categories that had higher sums than theatarategory. The constant,

max, Was introduced to prevent a single event causing extrelagjg changes to the model.

We also made it possible to enable shuffling between iteraitid the algorithm. The idea for this was

to prevent the model from overfitting to the particular ordetraining instances.

4.3 Results

Using larger datasets for training can take a prohibitiveant of time for thecis andBrFG salgorithms.
However, any time benefits provided by other algorithms rtedoe balanced with their influence on
accuracy. Table 4.1 shows how the accuracy of the algorithessribed previously compare with the

previous estimation methods.

Tagging and parsing accuracy are both similar, and the sieatkase that does occur in F-score is not
statistically significant. The speed of the parser usingghmodels is also similar, with the averaged

perceptron outperforming the previous methods by a coraditle margin.

4The derivation of this alternative form can be found here:
http://www-inst.eecs.berkeley.edu/ cs188/sp09/ptejelassification/classification.html
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Cat Accuracy (%) F-score Speed
Algorithm Single Multiple (%)  (sent/sec)
GIs 91.49  96.32 83.82 51.7
BFGS 91.38  96.29 83.73 52.1
AP 9141 95.65 83.74 59.2
MIRA 9142  96.19 83.69 50.6

TABLE 4.1: Performance comparison of model estimation algoritimthewsJ.

Data Training Time (sec)
(sentences) GIS BFGS AP MIRA
40,000 7,200 6,300 76 96

80,000 14,000 13,000 160 200
440,000 * * 950 1,200

TABLE 4.2: Comparison of training time for several model estioratlgorithms.

The time saving provided by the perceptron based algorithmigarly illustrated by Table 4.2. The new
algorithms are able to train on eleven times as much dataeggévious methods, in a sixth of the time.
The final row is included to demonstrate that the time takarticoes to scale linearly with respect to
the amount of training data. Comparaldess andBrGs models were trained oft0, 000 sentences, but

a different computer was used, making direct comparisopgrapriate.

Further comparisons of the algorithms can be found in Chdptelhey are not included here as the

experiments rely upon the adaptive training methods stitle described.

4.4 Summary

By implementing two perceptron based algorithms to estrttat parameters for our maximum entropy
models | have been able to utilise orders of magnitude maeg dano extra cost in time. Importantly,

even when using only the data used previously, the modethipeal by this training process can be just
as accurate as models estimatedahy or BFGS These developments provide the architecture needed

for rapid adaptive training on large amounts of trainingadat



CHAPTER 5

Adaptation

Once the extra data had been created and the new estimaaitrahs were implemented it was possi-
ble to begin scaling up the amount of training data. | desdtilis training process as ‘adaptive training’
as the extra data was annotated by the baseline system,amthth is now being used to retrain an ear-
lier stage in the system, the supertagger. To support the atning data | also needed to parallelise the

training process, and some investigation was performeetterihine the scalability of the new system.

In this chapter two domains are explored, newspaper textafctext. The first is the standard domain
for parser evaluation and is the domain the baseline systsrinained on, and the second has recently
become a particularly popular resource for many tasks. Also, by considering two domains and
measuring cross-corpus performance | was able to demgied domain adaptation is occurring. This
chapter also contains further comparison of the variousanegtimation algorithms to demonstrate that

the averaged perceptron amtRA continue to produce comparable results as the amount okdates

up.

5.1 Background

5.1.1 Semi-supervised Training

Most statistical parsers and supertaggers share a simglaimg method in which a large collection of

sentences with gold-standard annotations are used torgohatmodel. This method has the disad-
vantage that it is expensive to apply to novel domains andrathtural languages. An alternative is a
form of semi-supervised training in which multiple modets rained on a smaller set and then reliable

output from one model on unlabeled data is used as furtheirtgadata for the other models.

One of the first demonstrations of semi-supervised traimngLP was for word sense disambiguation

(Yarowsky, 1995), in which a model was proposed that comeitieollocations in documents to classify

29
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examples of words into sense categories. Initially a sneabEcollocations for the word being consid-

ered were identified and labeled with a sense, and then #dinoss of those collocations in the corpus
were labeled with the same sense. The system then labeleddisahthe corpus as possible based on
the context of words already labeled. By repeating thisgsea@ll instances in the corpus were labeled,

with an accuracy of more tha6%, clearly demonstrating the feasibility of semi-superdiseining.

This was followed by Blum and Mitchell (1998), who appliedttaining to classification of web pages.
Two naive Bayes classifiers were used, one trained on thesvoradyperlinks, the other trained on the
words in web pages. Initially both were trained using a sdabéled examples. Then a series of iter-
ations were performed in which both classifiers considerset af unlabeled examples and added the
ones they could most confidently label to the training set.dvaluation the classifiers were compared
to a baseline classifier that always returns ‘negatiged another pair of naive Bayes classifiers trained
on only the initial training set. Both of the co-trained diiers performed better, in particular the page
based classifier, which more than halved its error raterdatagly in one series of iterations the page
based classifier became worse than the baseline during sheefiriterations, but was then able to im-
prove during the next thirty iterations, more than halvitsgimitial error rate. This clearly demonstrates
that once enough iterations have been completed, coftgappriovides a great improvement, success-
fully utilising unlabeled examples. Blum and Mitchell (¥)%also developed a formalism to describe
the learning process in terms of a bipartite graph. Two detentices are defined by different views of
the documents; in the test described one set was the wordgarlimks and the other was the words
in pages. Examples from the data set form edges in the gragiicating that the two features that are
linked should indicate the same label. Once enough edgesbeen added, the graph will consist of

two components, corresponding to the two labels.

Algorithms for supervised learning have been developedh sas AdaBoost (Freund and Schapire,
1997), which combine the results of several weak learniggradhms to produce improved results.

Collins and Singer (1999) proposed a co-training varianAddBoost, CoBoost, and applied it to a
document classification task. Unlike previous work, in vihadl of the models would change in each
iteration, Collins and Singer (1999) alternated betweemlets) using one to train the other and vice
versa. Starting with a small set of seven seed rules, the lagsifiers gradually developed by adding
rules based on new classifications of previously unlabetetdimhents. By only adding the most definite
new rules in each iteration the system was able to outperéoiarowsky (1995) style implementation

by 10%.

178% of the pages had a correct classification of negative.
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One disadvantage of the approaches to co-training dedcriioe far is that they assumed that
two redundant views of the data existed that could be usediduglly for perfect classification.
Goldman and Zhou (2000) considered using models that didjmatantee this property, and instead
required that the models divided the examples into a set ai/algnce classes. In each iteration the
system determined which of the recently labeled exampl@ss$s from one model to the other by hy-
pothesis testing on confidence intervals, the amount oadatreled data that would be obtained, and a
conservative estimate of the classification noise rate. @rsample task described in the paper, cate-
gorical classification of UCI datasets, co-training using tD3 and HOODG algorithms led to an error
rate more thar% lower than either algorithm alone. This is an improvementnofe than25% over
either algorithm alone, anth.6% over an algorithm that omnisciently picks the better refolin the
two algorithms. This last result clearly indicates thatiidd of extra training data through co-training
has led to more accurate models. Importantly, the origioatce of this training data was unlabeled

data, which is available in large quantities.

5.1.2 Semi-supervised Training for Parsers

Semi-supervised training was first considered for parsin§drkar (2001), who applied co-training to
a supertagger and parser fanc. Unlike previous attempts to apply unsupervised trainmgarsing,

the evaluation was performed using sentences in the Perbdm. In each iteration the sentences that
were parsed with greatest certainty were added to therigaggt. A major difference between parsing
and the previous co-training experiments described isttigaset of ‘classes’ that the parser can place
sentences in is arbitrarily large, and while the set usetibgtipertagger is limited by a lexicon, it is still
orders of magnitude greater than the sets previously degstrDespite these challenges, the co-trained
supertagger and parser improved by more tffdnn both precision and recall over the baseline parser

trained by supervised methods.

Another form of semi-supervised training is self-trainimgwhich a single system is trained on its own
output on unlabeled data. Usually this has been found toigieosither only slightly positive or sig-
nificantly negative results, presumably because errofisamtiginal model are amplified in subsequent
models (Charniak, 1997). However, McClosiyal. (2006) demonstrated that a variant of self-training
similar to co-training can provide improvements. Rathanthsing two completely independent systems
that are retrained in each iteration, a parser and rerangsz used and only the parser was retrained.

The purpose of the reranker was to take the top fifty parsedupeal by the parser and rerank them

2Previously successful attempts had generally used shi@$srcomplex sentences.
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according to a range of linguistic features. Note that thissddiffer from self-training approaches, since
the parser’s output is modified independently before betgped, but it is not quite the same as co-
training since only one of the models is being changed in st Using these methods the reranking
parser was able to improve its F-score froth3% to 92.1% on section 22 of the Wall Street Journal

corpus. These results are important as the core idea ofdppitoach is the same as the idea being
applied here, except that instead of using the output of sepand reranker to retrain the parser, | am

using the output of a supertagger and parser to retrain pertsigger.

5.1.3 Semi-supervised Training for theccG Supertagger

There has been considerable investigation of the featw®s by the models in supertaggers, but how
they are trained has not yet been as thoroughly addresséld oBihese areas are critical to supertagger
performance, which has been extensively demonstratedséodhgreat influence on subsequent process-
ing. One method that has been successfully applied elsewbémprove training when only limited
labelled data is available is semi-supervised trainingjtduas not yet been applied to@c G supertag-
ger. One of the benefits and challenges of semi-superviagdny is the large quantity of extra training
data it provides. This is a benefit because it makes trainingponains with small amounts of annotated

data feasible, but is also a challenge because it createsandedor scalable high performance systems.

Another idea that has not been addressed is to consider semigsupervised training of a supertagger
to adapt it to a particular parser. If we aim only to improveeg, while maintaining accuracy, then
one method of doing so is to decrease the number of tags edpplhile still including the one that the
parser was going to use anyway. This should lead to the samneaay, as the parser uses the same tag
it would have if the model assigned more tags. However, thegpas faster as it has fewer derivations

to consider.

Of course it would be ideal to improve the confidence of our ehasing vast amounts of gold stan-
dard annotated data, reducing ambiguity while still ingtgdthe correct tag. This would give a speed
improvement, as there are fewer derivations for the pamseonsider, and probably an accuracy im-
provement too, as the tagging is more accurate. Howevele wid do not have access to vast amounts
of gold standard annotated data, we can easily generatewemsints of data labelled with the parsers
final derivations. This data can then be used to retrain thersagger to give the speed boost described

in the previous paragraph.
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To enable the use of large amounts of data for semi-supedrtisining the supertagger needs to be

scalable. To achieve this aim | needed to parallelise theitigaprocess.

5.1.4 Message Passing Interface

The Message Passing Interfacer() is a message passing application programmer interfatevim
created to assist programmers in developing code that wifidrtable while maintaining high perfor-
mance (Sniet al,, 1995). The actual definition @ir1 is language independent, and since its creation it
has been implemented across a range of platforms and laegjiraduding C (Gropget al., 1996) and
Python (Miller, 2002).

Despite being used extensively elsewhere, very little wapgkears in the literature forLp that uses
MPI. One of the first examples is by Clark and Curran (2003), wiemas used to parallelise th&s
parameter estimation algorithm to allow a larger dataséetdield in memory (3@B of RAM). This
work was also included in the outline of a high performandeastructure fonLp (Curran, 2003), which

described usingPI to provide scalability as corpora grow in size.

Recently other groups have started to use, such as Kazama and Torisawa (2008), who parallelised
a clustering algorithm for constructing a gazetteer for edrantity recognition. This made it feasible
to perform clustering with a large vocabulary and a companatly expensive algorithm. As well as
MPI, there has been some use of other platforms for parallel atngpin NLP, such as the use of Grid

computing in Hughest al. (2004) for creating indices for information retrieval task

The low usage ofPI1 in the field could be the result of the limited size of annataterpora available
for training. However, as was shown earlier, recent devekis in semi-supervised training using a
large amount of unannotated data are creating a need faeasffiparallelised implementations of tools

in NLP.

5.2 Implementation

To enable the use of larger models | increased the amountcessiblerRAM and processing power
by parallelising the supertagger training usimg! and the MapReduce libraryrMPI. The stages

in the training process for the system can be seen in Figure Barallelising this process involved
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FIGURE5.1: Single thread model creation.
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FIGURE 5.2: Parallel model creation.

modifying the entire process, which can be divided into twionpry stages, feature extraction and

weight estimation.

5.2.1 Parallelising Feature Extraction

The first stage of supertagging is feature extraction andegggion. Extraction is trivial to parallelise by

dividing the contexts amongst a set of computers. Aggregasi necessary to determine which features

should be excluded as being too rare and so | wsedpPI to combine frequency counts and update the

values for relevant nod&sThis process is summarised in the first half of Figure 5.2nehhe data is

divided initially, and then there is communication betwemes during feature extraction so that the

sets of contexts and features created are correct.

3The parallelised form of feature extraction was implemettg pair programming with Jessika Rosener during the JHU

CLSP Workshop 2009
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FIGURES.3: Information flow for parallel estimation of maximum ey models and
perceptron models

5.2.2 Parallelising Feature Weight Estimation

For weight estimation the maximum entropy methods were amnalssingly parallel’, as the main pro-

cessing is the calculation of sums of weights across alitrgiinstances. The parallel version of these
methods differ in three main ways. First, the instances mdetl between a set of computers. Second,
sums are calculated across all computers to determine sageshanges to weights. And third, after

each update the changes are distributed to all nodes.

The perceptron methods adjust the weights based on eacingranstance individually and so the
parallelisation above was not applicable. The trainingaimses are still distributed across a cluster of
computers, but during weight estimation only one compugtevarking at a time, adjusting the weights
based on all of its instances before passing the updatechtseig the next node. This saves time by

removing the cost of loading the training instances frondltksk when there are too many to fitRam.

The difference in communication usage by the two methodsyduced by Figure 5.3. Clearly the
maximum entropy methods involve more network usage, bukeitthe perceptron methods, every node

is involved in the calculations, leading to considerabiectisavings as the number of nodes scales up.
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Time (1000s of seconds)
1 process per node All on one node
Data 1 2 3 4| 1 2 3 4

40k 29 18 14 1229 18 14 1.2
80k 69 40 30 2569 40 3.0 25
440k 38 21 15 12 38 21 15 12
2000k 170 94 66 52170 95 67 53
4000k * 190 130 119 * * * %

TABLE 5.1: Small scale scalability tests of the paraties implementation.

5.3 Results

5.3.1 Scalability

Since the purpose of the parallel implementation was to avgthe scalability of the training process
a series of tests were performed with different numbers ofgssors and amounts of training data to
confirm that the changes were effective. All of the resultshis section were collected by training
models using newspaper text aads, with the exception of th&iRA estimated models in Table 5.3.
The system that was used for training the models was theaSitimputing cluster, which is made up of
seventy-four computer nodes. Each node contains eighs,cfangr each from two Intel Xeon X5355s,

clocked at 2.66GHz, as well as sixteen gigabytesaf.

While it was important to perform the tests summarised ia #action, it would have been a waste of
resources to perform more tests than necessary. As a rasuldll of the cells in the tables contain
results. Any cell containing a ‘=" was hot tested for thiss@a Cells containing a ' indicate tests that

could not be run because insufficiemim was available.

The first set of tests were small scale, to see at what poimigdesnode has insufficiemAmM to support

all of the data, and how whether inter-node network latenayg an issue. Table 5.1 clearly demonstrates
that the parallel implementation is providing a significanprovement. The left half of the table de-
scribes tests where one MPI node was running on each compdé though a request was made for
all eight cores to ensure full access to v and no interference by other users’ processes. The right
hand side describes tests where all of#tm nodes were on a single compute node. There is little to no
difference between the two sides, which is good, as it mdendistribution ofvpi instances across the

cluster can be of any form, as long as enoegiv is available.
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Time (1000s of seconds)
Data 1 2 4 8 16 32 64

40k 29 18 1.2 098 0.83 0.81 0.78
80k 69 40 25 20 14 12 1.2
440k 38 21 12 80 6.1 46 3.6
2000k 170 94 52 - — - -
4000k * 190 110 - - — -

TABLE 5.2: Large scale scalability tests of the paraiet implementation.

Time (1000s of seconds)
GIS MIRA
Data 1 2 4 g 1 2 4 8

40k 29 18 1.2 0.980.12 0.12 0.11 0.12
80k 69 4.0 25 200.27 0.26 0.25 0.26
440k 38 21 12 80 20 18 18 138
2000k 170 94 52 -+ 97 88 8.8 -
4000k * 190 110 4 * 20 - -

TABLE 5.3: Comparison of training time for parallel implemertas ofGis andMmIRA.

Also, the results show significant improvements in traininge. The relationship between number of
instances and amount of time is not quite directly inversghportional, but doubling the number of

instances does lead to at least3& decrease in time for the larger data sets.

Once | had established that inter-node communication woolde a major issue | performed the larger
scale tests summarised in Table 5.2. As the number of insteszales up, we experience diminishing
returns, but as the amount of data scales up those returnsveipWith sixty-four instances we can

train on eleven times as much data as a single instance amtetgkthare5% longer.

As described in the previous section, the parallel implaatems differ as the perceptron algorithms
modify the weight vector continuously, and so only a singlecpssor can work at once. However, the
parallel implementation is still important, as it allowscass to far greater amountsr4m. In Table 5.3
we can see that increasing the number of instances does paivientraining time fomiRA, but the

algorithm is so fast anyway, that it far outpaa@s at these scales.

Based on these tests | came up with different strategiesiforimg large scale training experiments:
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Supertag Accuracy F-score Speed
(%) (%) (sent / sec)
Data Single Multiple
wsJ 91.49 96.32 83.82 51.7
NANC
40k 90.81 95.57 83.02 59.1
400k 91.57 96.09 83.55 57.2
2000k 91.71 96.35 83.85 56.4
4000k 91.70 96.39 83.97 55.7
5349k 91.73 96.39 84.03 55.7
WSJ+ NANC
40k 91.62 96.36 84.05 56.9
400k 91.87 96.46 83.98 56.5
2000k 91.98 96.64 84.22 55.6
4000k 91.98 96.68 84.32 55.0
5349k 92.02 96.67 84.32 55.1

TABLE 5.4: Performance of models trained usingnc data.

e GISandBFGS, as many instances as possible, without usingam (extra usage due to process
overhead$

e AP andMIRA, one instance per node, using as few nodes as possible

5.3.2 North American News Corpus

Before considering adaptation to other domains it was itambrto investigate the potential for im-
provement on newspaper text. Table 5.4 presents the redudtdaptive training experiments on the

North American News Corpus. All of these models were estahasingGis and are evaluated here on
Section 00 of thevsa

The most important result here is the clear improvement @eddrom51.7 to over55 sentences per
second. These improvements are far smaller than those dénaiteal in Chapter 3. Presumably to attain
the speeds from Table 3.3 a reduction in ambiguity will beinexgl. The relationship between ambiguity,

accuracy and speed is explored further in the following tdrap

Table 5.4 also demonstrates that adaptive training doedauwsease accuracy. In fact, slight improve-

ments in tagging accuracy and parsing F-score are obseFhedest result is an improvement®$%,

4These overheads are in fact the reason that no tests wergrmped with 8 instances on a single node for two million
sentences.
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Supertag Accuracy Ambiguity F-score Speed
(%) (cats / word) (%) (sent/ sec)
Data Single Multiple
wsJ 90.05 95.34 1.32 825 46.8
Wikipedia
40k 90.56 94.79 1.26 82.1 61.3
400k 90.89 95.71 1.27 82.7 61.3
2000k 91.13 95.80 1.28 82.7 57.3
4000k 91.07 95.82 1.28 83.0 59.9
8000k 91.16 95.80 1.28 83.3 60.5
wsJ+ Wikipedia
40k 90.64 95.37 1.29 82.6 58.9
400k 91.02 95.68 1.28 82.5 59.7
2000k 91.23 95.73 1.28 82.4 59.7
4000k 91.11 95.83 1.28 82.7 59.1
8000k 91.16 95.82 1.28 82.9 59.8

TABLE 5.5: Performance of models trained using Wikipedia data.

which was made by the model trained on almost all of W& data in theNANC and is statistically
significant.

As expected, the addition of gold standard training datddda a considerable improvement in accu-
racy. Interestingly, even when tagging accuracy is simniach as for the model trained @n000, 000
sentences from theaNcC and the model trained otD, 000 sentences plus section 02-21 of they, the
model trained with gold standard data performs better.

5.3.3 Wikipedia

One of the primary aims of this work was to use supertaggeptatian to improving parsing per-

formance on domains other than newspaper text. To improxerpgance on web text | trained new
supertagging models using automatically labelled Wikipddxt, the results of which can be seen in
Table 5.5. The improvements here are even greater thandqrévious tests, with increases in parsing

speed fromi6.8 to around60 sentences a second, with no loss in accuracy.

Interestingly, as more data is used parsing speed does paivm but accuracy does considerably. The
best performing model, trained using eight million wikigedentences, improves by8%. Importantly,

this change was found to be statistically significant usiregtest described in Chapter 3.
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Supertag Accuracy (%)
WSJ Wikipedia
Single Multiple Single Multiple

Training Corpus no gold witlvss no gold withwsy | no gold withwsJ no gold withwsJ
WSJ n/a 91.49 n/a 96.32 n/a 90.05 n/a 95.34
40k NANC  90.81 91.62 95.57 96.36| 90.20 90.53 95.10 95.28
400kNANC  91.57 91.87 96.09 96.46| 90.47 90.58 95.74 95.65
2000kNANC  91.71 91.98 96.35 96.64| 90.73 90.74 96.13 96.01
4000kNANC  91.70 91.98 96.39 96.68 91.04 91.04 96.16 96.19

5349kNANC  91.73 92.02 96.39 96.67| 90.93 91.04 96.25 96.21
40k Wiki  88.75 91.55 93.90 96.31| 90.56 90.64 94.79 95.37
400k Wiki  89.89 91.34 95.07 96.22| 90.89 91.02 95.71 95.68
2000k Wiki  90.42 91.34 95.54 96.27| 91.13 91.23 95.80 95.73
4000k Wiki  90.52 91.33 95.64 96.29| 91.07 91.11 95.82 95.83
8000k Wiki  90.66 91.36 95.75 96.29| 91.16 91.16 95.80 95.82

TABLE 5.6: The effect of adaptive training on supertagging aayura

In the previous section the same dataset was used to tunettéelels as was used for the evaluation
— Section 00 of thevsa Here | also tuned on Section 00, but tested on the Wikip&fia-dataset.

Interestingly, this causes a significant difference in ayaiy, leading the supertagger to assign fewer
tags per word. This makes sense, since these models waiedtia the Wikipedia domain and therefore
should be more confident when tagging Wikipedia text. Howeglecreasing ambiguity leads to a
decrease in supertagging accuracy, and lower supertaggitigracy generally leads to lower parsing

accuracy. This makes the improvements in tagging accurayarsing F-score even more impressive.

5.3.4 Cross-Corpus Evaluation

To determine whether the supertagger is actually adaptinipg new domain or simply improving
overall, in this section | present cross-corpus comparafaine models in the previous two sections.
Each table considers a different aspect of performanceisastdictured with the cross-corpus results in
the top right and bottom left quadrants. To demonstraterit@snce of the addition of gold standard data
each row actually contains the results for two models, onbk wily the data in the ‘Training Corpus’

column, and another with the addition of the gold standasd data.
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5.3.4.1 Supertagging Accuracy

The first performance measure to consider is also the mdidiito interpret — supertagging accuracy,
shown in Table 5.6. If all of our data was gold standard thalte®f this section would be straightfor-
ward to interpret, as the more effectively a model is leagriiom the data, the higher its accuracy should
be. For automatically labelled data the situation is momaplacated as we are not in fact developing
models to produce the correct answer, but rather to procwecariswer the parser would choose given

all the options it was previously.

For thewsJ section of the table the results are entirely as expectede Wikipedia trained models
consistently perform worse, the addition of gold standargb data always boosts performance, and
training on more of thevANC data leads to improved performance. Importantly, addingoat any
amount of Wikipedia data decreases performance in congpatistraining on thevsialone, which fits

with the theory that our model is adapting to the Wikipediandm.

The results for Wikipedia are where the effect of adaptiaintng become more difficult to interpret.
The ambiguity of each beta level was tuned to be the samelforaglels for thewsyg but this does not
translate to the same ambiguity for Wikipedia. TwieJ model and all thevaANC models had tagging
ambiguities of between.32 and 1.33 for Wikipedia, while the Wikipedia trained models had ambi-
guities betweeri.26 and1.29, as shown in Table 5.5. This is the most probable explanditiothe
slightly poorer performance of the Wikipedia trained madehen multitagging. However, the single
tagging results, which sidestep the ambiguity issue, lgléadicate that the Wikipedia trained models
are performing better. Again, this demonstrates that tpersagger is successfully adapting to the new
domain. Additionally, thevANC trained models perform worse on Wikipedia than they do onatke

which fits with the adaptation hypothesis.

5.3.4.2 Parsing Accuracy

The next metric to consider is parsing accuracy, shown iteTafd. While the primary aim of this work
is to improve parsing speed, it would not be a worthwhile iowement if it came at the cost of parsing
accuracy. Additionally, it was expected that training otr&xdata from one domain should improve

performance on that domain in particular, and not another.

The results in Table 5.7 clearly demonstrate that perfoomdras not decreased and that the improve-

ments are domain specific. For thesithe most accurate models are those trained omthec, while
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F-score (%)

WSJ Wikipedia
Training Corpus no gold witkvsJ| no gold withwsJ
wsJ nla 83.82 n/a 82.5

40k NANC  83.02 84.05 81.5 81.8
400kNANC  83.55 83.98 81.2 81.4
2000kNANC  83.85 84.22 81.6 81.6
4000kNANC  83.97 84.32 81.9 81.9
5349kNANC  84.03 84.32 82.0 81.8
40k Wiki  79.83 83.90 82.1 82.6
400k Wiki 81.75 83.69 82.7 82.5
2000k Wiki 82.57 83.70 | 82.7 82.4
4000k Wiki 82.82 83.77 | 83.0 82.7
8000k Wiki 82.97 83.75 | 83.3 82.9

TABLE 5.7: The effect of adaptive training on parsing accuracy.

almost all of the Wikipedia trained models perform worseattiee baseline. This suggests that the Wiki-
pedia trained models have adapted and no longer model thepaper text domain as effectively. For
Wikipedia we observe the opposite, with almost all Wikigettained models performing better than the

baseline, and allaANC trained models performing worse.

The results for the Wikipedia trained models are partidylanpressive, as in Table 5.6 we saw that the
decrease in ambiguity was leading to lower tagging perfocaaHowever, these seemingly contradic-
tory results make sense when we consider the fact that thelmace being trained on parser output.
We would expect that adaptive training of the models wouldkerthem produce the tag sets that the
parser chooses. This could lead to a decrease in taggingmenice, since the model is not learning to
produce the gold standard. However, it should not lead tcceedse in parsing performance, since the

tagger is now even more likely to provide the tag that thegram®uld have used anyway.
Interestingly, performance continues to improve as mamittg data is used, right up to the largest

models, though we do observe diminishing returns.

5.3.4.3 Parsing Speed

The final metric, but most important for this work, is speedbl€ 5.8 clearly shows that the models are
adapting to the domain they are trained on. In fact, someefibdels perform even worse than the

baseline in the cross-corpus tests.



5.3 RESULTS 43

Speed (sent/ sec)

WSJ Wikipedia
Training Corpus no gold witkvsJ| no gold withwsJ
wsJ nla 51.7 n/a 46.8

40k NANC  59.1 56.9 48.5 45.9
400kNANC  57.2 56.5 47,7 47.5
2000kNANC  56.4 55.6 49.2 49.7
4000kNANC  55.7 55.0 48.6 48.6
5349kNANC  55.7 55.1 49,7 48.9
40k Wiki  48.1 54.3 61.3 58.9
400k Wiki  46.9 50.6 61.3 59.7
2000k Wiki  45.0 47.9 57.3 59.7
4000k Wiki  44.9 45.6 59.9 59.1
8000k Wiki  46.1 47.5 60.5 59.8

TABLE 5.8: The effect of adaptive training on parsing speed.

It may seem surprising that speed improvements do not ocpragressively more data is used, but
this is probably a result of the tuning of beta levels. By mgnto match the average number of tags
supplied we are effectively tuning the amount of work thespawill have to do as it works out which
combination of tags leads to the best derivation. This issillebe further explored in the following

chapter.

Of course, this argument raises the question of why any iagonent is observed. The reason appears
to be that more sentences are parsed earlier, as shown e 8blParsing a sentence at an earlier level
is a serious advantage, as going to the next level would nm&@eating the entire parsing process, and

doing so with more possible derivations, as at the lower$atye supertagger is supplying more tags.

5.3.5 Algorithm Scalability

In the previous chapter we saw that the perceptron basedthlgs could train on orders of magnitude
more data, but given the same amount of data as the previotmadse they produced slightly worse

results. Here | investigate their performance over a widage of datasets.

The first section of Table 5.10 is exactly the same as in theiqus chapter, and the other sections
display similar trends. The perceptron algorithms perfammnse, but not by a great amount. Importantly,

once training on more than just tkesy MIRA andAP both perform better than the baseline for parsing

accuracy in all cases.
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Number of sentences parsed at each level

Without wsJi02-21 WithwsJi02-21
WSsJ Wikipedia WwSsJ Wikipedia

Data 1 2 3 4 5 12 3 4 5 1 2 3 4 5 12345
wsJ 1787 41 34 13 19278 8 8 3 3[1787 41 34 13 19278 8 8 3 3
NANC

40k 1829 25 14 7 21287 5 1 3 3/1832 23 16 7 20279 8 4 3 4
400k 1857 17 13 3 286 8 2 0 0/1852 19 12 5 @287 7 3 0 O
2000k 1867 10 9 3 290 5 2 0 0/1869 9 8 2 4289 6 2 0 O
4000k 1871 11 5 4 293 5 1 0 11874 8 5 4 4291 6 2 1 O
5349k 1872 12 5 3 292 4 1 1 11874 9 5 4 3290 5 1 2 0
Wikipedia

40k 1827 29 20 8 1628 6 4 2 21831 33 19 4 10282 6 7 0 5
400k 1855 15 14 1 11292 3 3 0 1/1853 24 12 4 4291 4 1 2 1
2000k 1870 11 9 4 292 3 4 0 0/1871 14 8 2 1292 5 2 0 O
4000k 1875 9 7 1 293 4 2 0 1/1872 14 6 1 3293 4 1 0 1
8000k 1875 10 8 3 292 5 2 0 1/1878 10 5 3 3292 5 1 0 1

TABLE 5.9: Number of sentences parsed at each level for a rangedsdlmo

One issue faced by the perceptron based methods is thatdhmegt dctually produce probability distri-
butions. This is solved by normalising, but this was not piegor AP trained models that used more

than400, 000 sentences as the values being used became toc’large.

The same trends can be seen for Wikipedia in Table 5.11. Tieeeon algorithms consistently per-
form slightly worse, but in this case the accuracy of everdhgest model is still worse than the baseline.
However, as was observed in Table 5.7, eged does not show noticeable improvements in accuracy
when trained on more Wikipedia data. Also, all of these medetre trained using combinations of
Wikipedia and the gold standawisJidata, while the mos accurates models were those trained using
Wikipedia alone. This decision was made mainly to make thesalts more comparable to those in the

previous table.

5The normalisation process involves considering expoakntif the weights, which quickly overflow as the values in-
crease.
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Supertag Accuracy F-score Speed
(%) (%) (sent / sec)
Algorithm  Single  Multiple
WSJ
GIS 91.49 96.32 83.82 51.7
BFGS 91.38 96.29 83.73 52.1
AP 9141 95.65 83.74 59.2
MIRA 91.42 96.19 83.69 50.6
wWsJ+ 40k NANC
GIS 91.62 96.36 84.05 56.9
BFGS 91.51 96.24 84.14 57.3
AP 9142 95.77 84.04 64.0
MIRA 91.61 96.25 83.93 56.6
wsJ+ 400kNANC
GIs 91.87 96.46 83.98 56.5
BFGS 91.46 96.12 83.89 60.4
AP 91.68 96.08 83.91 62.9
MIRA 91.78 96.39 83.92 57.5
wsJ+ 2,000kNANC
GIS 91.98 96.64 84.22 55.6
BFGS 91.95 96.52 84.31 57.8
MIRA 91.83 96.60 84.11 56.9
wsJ+ 4,000kNANC
GIs 91.98 96.68 84.32 55.0
BFGS 91.97 96.55 84.19 57.2
MIRA 91.93 96.62 84.10 55.0
WsJ+ 5,348,99/NANC

GIS 92.02 96.67 84.32 55.1
MIRA 91.93 96.58 84.15 54.7

TABLE 5.10: Comparison ofvsJperformance for various model estimation algorithms.
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Supertag Accuracy Ambiguity  F-score Speed
(%) (cats/word) (%) (sent/sec)
Algorithm Single  Multiple
WSJ
GIS 90.05 95.34 1.32 82.5 46.8
BFGS 89.89 95.33 1.31 82.6 48.5
AP 89.28 94.49 1.35 81.7 57.1
MIRA 89.53 95.19 1.33 81.5 47.9
wsJ+ 40k Wikipedia
GIs 90.64 95.37 1.29 82.6 58.9
BFGS 90.52 95.24 1.29 81.3 60.7
AP 90.32 94.61 1.28 81.7 69.7
MIRA 90.28 95.28 1.30 81.5 58.6
wsJ+ 400k Wikipedia
GIs 91.02 95.68 1.28 82.5 59.7
BFGS 90.67 95.22 1.29 81.3 58.6
AP 90.71 95.16 1.27 82.2 69.4
MIRA 90.89 95.58 1.28 82.2 61.4
wsJ+ 2,000k Wikipedia
GIs 91.23 95.73 1.28 82.4 59.7
BFGS 90.79 95.73 1.29 82.2 60.1
MIRA 90.76 95.62 1.28 81.9 59.3
wsJ+ 4,000k Wikipedia
GIs 91.11 95.83 1.28 82.7 59.1
BFGS 91.01 95.85 1.28 82.2 64.3
MIRA 90.93 95.73 1.29 82.4 58.7
wsJ+ 8,000k Wikipedia
GIS 91.16 95.82 1.28 82.9 59.8
MIRA 91.16 95.77 1.29 82.0 45.6
wsJ+ 16,000k Wikipedia
MIRA 91.08 95.92 1.29 81.7 56.5
wsJ+ 26,000k Wikipedia
MIRA 91.05 95.95 1.29 81.6 57.2

TABLE 5.11: Comparison of Wikipedia performance for various miedéimation algorithms.
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FIGURE 5.4: Overall performance comparison on thisd

5.3.6 Summary

The major results of this chapter are summarised in Figuteabd Figure 5.5. Before exploring the

results in these figures it is important to understand alhefihformation they contain.

Each circle represents a different model, and its posisatetermined by its speed and accuracy on the
corpus given in the caption. Note that the ranges coveretidogites on the two plots are different, this

was necessary to improve readability.

The size of each circle reflects the amount of data used tdroehshe model. The sizes do not scale
linearly with the amount of data, as that would make somesibié or others enormous, but they do

reflect the overall trend.

The colour of each circle is determined by the algorithm usdthin it, as shown in the key. Finally, the
dot in the centre of each circle indicates what data was Bkadk dots indicatelANC data, white dots

indicate Wikipedia data, and no dot is included for modedged on only thevsifrom CCGBank.

Note that in Figure 5.4 theiRA model trained on only thezsshappens to coincide almost exactly with
a GIs model trained on Wikipedia, &0.5 sentences per second. The white dot at that point is for the

GIS model.
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FIGURE 5.5: Overall performance comparison on Wikipedia.

The baseline model is marked using a single black dot andcl bie is included at its F-score to enable

easier comparison of other models.

Finally, when looking at these diagrams the best resultidahe top right hand corner, where speed and
accuracy are both high. However, any result that is abovéosedo the baseline accuracy line meets

our target of maintaining accuracy.

There are a few trends to note in these diagrams. First cantgid arrangement of colours. In general
they are mixed up throughout the plot, which reflects the tzat all of the algorithms produce models

of similar quality. This is a crucial result as it means thekuwdescribed in Chapter 4 was successful.

The second important trend to consider is the distributibWikipedia based models compared to
NANC based models. In Figure 5.4, where the evaluation is on regesfiext, theuANC based models

generally perform better, clustering in the top right haodner. The opposite trend is observed in
Figure 5.4. This indicates that the models have indeed adaptthe particular domain of the training

data.

Also note that in both cases the most accurate models are tifzsed on larger amounts of text, visible
as larger circles higher up. At the same time, as more datatine wrong domain is used, performance

decreases. This is further evidence that adaptation igegu
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Some other patterns are present for the accuracy and sppadiofilar estimation methods. Specifically
GIS appears to generate particularly good models, and thegae@erceptron appears to generate the

fastest models.

5.4 Summary

I have now demonstrated that adaptive training can imprarsipg efficiency. By parallelising the

training process and using the algorithms described in tbgqus chapter | was able to train on up to
650 times as much data. These new models were produced withpekma human annotated data, and
without any domain specific changes to the feature setsaya#itins to the training process. The models
| produced allowed the supertagger to supply the tags theeparas most likely to use, leading more
sentences to be parsed earlier. This clearly demonstretgsotential for using automatically annotated

data for training.

Also, by training on substantial amounts of automaticafipatated data from Wikipedia | was able to
create models that are adapted to the domain. Cross-coppysatisons demonstrated that adaptation

was indeed occurring, and as more training data was usegstensbecame more accurate.

One of the major issues raised within this chapter is thauhing on the number of tags assigned per
word | am essentially tuning to the number of derivationspheser will have to consider. If the models
can be tuned in a different way it may be possible to decreag@gaity, thereby increasing speed,

without losing accuracy. This challenge is one of the fosusfe@he next chapter.



CHAPTER 6

Optimisation and Analysis

In the process of running the adaptive training experimewmsjuestions in particular were raised. First,
with so much extra data are their more features that are conemaugh to be useful? And second, does a
well founded method exist for optimising the number of taggigned when multitagging? The answers

to these two questions form the basis of this chapter.

6.1 Background

6.1.1 Features

Recently, Cooper (2007) experimented with a range of exatufes for theccG supertagger, with

limited success. It is likely that data sparseness was arniggae for these extra features, as their
greater complexity meant that each possible combinaticattabutes in the feature would occur less,
if at all, in the limited training data. If this problem can beercome we may be able to reincorporate

these features with improved results.

6.1.2 Parser — Supertagger Interaction

When the C&C parser was first constructed it was thought beaparser should do most of the work to
maximise performance. However, as described in Chaptém@sd found that by tightly integrating the
supertagger with the rest of the parser great speed impenmswere possible, without loss of accuracy.
This interaction makes the behaviour of the system diffimufiredict, and while some attempts at local
optimisation have been performed, there has been no coamsigh study of the parser — supertagger

interaction.

50
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6.2 Implementation

6.2.1 New Features

The standard features used by the supertagger, listed batevtaken from a five word window sur-

rounding the word being tagged.

e Word unigrams
e POStag unigrams

e POStag bigrams

| considered the expansion of this set to include:

e Word bigrams
e Word trigrams

e POStag trigrams

| also considered extension of the window to seven wordslfdeatures. The extra features this intro-

duces are described as ‘far’ in the results below.

One of the issues in the current architecture of the parsmaisintroducing new features involves a
reasonable number of modifications in various locationdindupertagging code. Until now this has
not been a major issue, as more sophisticated features wienseful. Resolving this architectural issue

is one potential area for future work.

6.2.2 Accurate Sentence Level Speed Measurements

To accurately measure the behaviour of the parser | intediamew timing mechanism, using the Intel
timing registers. This meant that the time taken to parsé eatividual sentence could be accurately
measured in clock cycles. To minimise interference all igniests were performed without a user
logged in, but even so, the effects of background systenmepeas can be observed in some of the plots

as slightly darker thin vertical patches.
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Supertag Accuracy F-score Speed Features Attributes
(%) (%)  (sents/sec) (millions)
Features Single Multiple

wsJ+ 2000kNANC

All 92.22 96.75 84.14 54.7 10.9 2.15
-fartags 92.21 96.76 84.16 56.0 10.8 2.15
- bitags 92.13 96.76 84.27 55.4 9.82 2.11
- far bitags 92.21 96.74 84.17 55.7 10.4 2.15
- tritags  92.11 96.75 84.26 55.8 8.51 1.91
- far tritags  92.16 96.75 84.29 55.6 9.02 2.03
Baseline 91.83 96.60 84.11 56.8 7.82 1.89

wsJ+ 4000kNANC

All  92.28 96.79 84.25 53.4 15.5 3.15
- far tritags  92.25 96.78 84.19 54.7 13.1 3.01
Baseline 91.93 96.62 84.10 55.9 11.9 2.87

TABLE 6.1: Subtractive analysis of all-tag feature sets using fisillion sentences.

6.3 Feature Extension

Using theMIRA training method | was able to quickly construct a large sanoflels with a range of

feature sets, as shown in Table 6.2.

The results are not overwhelmingly positive, but are pramgis The decrease in tag accuracy when
removing the extra tag based features indicates that thesbefeatures contributing most to the im-
provements in accuracy. Based on these results | perforrpediments with two million sentences and

only the extra tag features, as shown in Table 6.1.

For these tests | switched to thaNC data as the test set for thesJis eight times larger than the test
set for Wikipedia, enabling more rigorous evaluation. 8igance testing between the baseline and the
best model, all extra features except tritags, showed iatitatly significant improvement in recall, but
not precision or F-score. Based on these results | traingdadl selection of models on four million

sentences, as shown in the table. Sadly there were no fimipesvements in performance.
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Supertag Accuracy Ambiguity  F-score

Speed Features Atg

(%) (cats / word) (%)  (sents/sec) (millions)
Features Single Multiple
WSJ
All  90.08 95.12 1.31 82.5 42.8 8.27 5.97
-fartags 90.14 95.15 1.32 82.3 42.9 8.25 5.97
- bitags 90.05 95.24 1.32 82.5 42.1 8.07 5.96
- far bitags 89.90 95.24 1.31 82.4 43.2 8.15 5.97
- tritags  90.22 95.34 1.33 82.3 42.6 7.87 5.89
- far tritags  90.31 95.31 1.32 82.2 43.2 7.99 5.93
- far words 90.32 95.27 1.32 82.6 43.1 7.91 5.89
- biwords 90.16 95.19 1.31 82.4 45.4 5.09 3.59
- far biwords 90.13 95.19 1.32 82.5 43.7 7.25 5.35
- triwords  90.20 95.16 1.31 82.6 46.0 4.88 2.78
- far triwords  90.19 95.24 1.32 82.2 43.6 6.88 4.73
Baseline 89.53 95.19 1.33 81.5 47.9 0.82 0.23
wsJ+ 40k Wiki
All  90.83 95.45 1.29 82.1 55.9 15.7 11.8
-fartags 90.68 95.45 1.29 81.9 53.6 15.7 11.8
- bitags 90.05 95.24 1.32 82.5 42.3 8.07 5.96
- far bitags 90.93 95.33 1.29 81.7 55.8 15.6 11.8
- tritags  90.70 95.47 1.29 82.0 54.5 15.2 11.7
- far tritags  90.95 95.49 1.29 82.2 54.9 15.3 11.8
-farwords 90.79 95.47 1.29 81.9 55.7 15.1 11.7
- biwords 90.98 95.31 1.28 82.3 57.4 9.52 7.11
- far biwords 90.96 95.42 1.29 82.2 55.0 13.8 10.6
- triwords 91.04 95.42 1.29 82.1 57.8 9.02 5.48
- far triwords  90.88 95.47 1.28 82.0 55.5 13.0 9.37
Baseline 90.28 95.28 1.30 81.5 58.6 1.45 0.46
wsJ+ 400k Wiki
All 91.19 95.82 1.28 82.3 57.4 65.8 51.0
-fartags 91.35 95.79 1.28 82.0 57.3 65.8 51.0
- bitags 91.43 95.85 1.27 82.6 56.9 65.4 51.0
- far bitags 91.29 95.79 1.27 82.2 57.8 65.6 51.0
- tritags  91.32 95.91 1.28 82.2 57.9 64.7 50.8
-fartritags 91.38 95.91 1.28 82.5 56.8 65.0 50.9
-farwords 91.34 95.91 1.28 82.3 57.4 63.7 50.4
- biwords 91.23 95.74 1.28 82.7 58.3 39.8 31.9
- far biwords 91.20 95.82 1.28 82.3 57.8 57.5 46.0
- triwords 90.98 95.74 1.27 82.6 58.8 34.2 21.4
- far triwords  91.10  95.83 1.28 82.6 58.4 52.7 39.5
Baseline 90.89 95.58 1.28 82.2 61.4 4.62 1.61

TABLE 6.2: Subtractive analysis of various feature sets using dipur hundred thou-
sand sentences.
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6.4 The Influence of Beta Levels

The beta levels chosen have an enormous impact on the qoflitg supertagger, and hence, the parser.
A higher level will cut out more categories, leading to lowategory accuracy and more failures to find
a derivation, but faster parsing. A lower level will raisaeggory accuracy, but slow down the parser and
cause more chart explosions. For the C&C parser the situiiéurther complicated by the fact that
multiple beta levels are chosen. This means that it may beptaisle to have a higher first level that
many sentences fail to be parsed at, since those senteritbg warsed at the next level, and overall,

time will be saved.

Previously the selection of beta levels has been ad hoc,shitht variations explored, but no rigorous
method for their choice. In order to remain comparable teiptes work all of the previous results were
measured using beta levels set based on ambiguity leveks.aifibiguity level is the average number
of tags assigned per word by the supertagger at a given lvea Tehese values were calculated for the
standard model and used as reference values for all othiare tBe models vary greatly, the beta levels

that correspond to the reference ambiguity levels had tetaculated for each.

The problem with this scheme is clearly illustrated by Tahl®, where a collection of models trained
using various amounts ofANC data have been tested using the default beta levels, assuglttabeta

levels tuned as described above.

First consider the ambiguity and multi-tag accuracy colaniost of the models have higher accuracy
when using tuned beta levels, but this is not surprisingsesaimost all of the models have lower ambi-
guity at the default level, and the more tags that are sugygiie higher than chance the correct one will
be included. Also, these models are being trained to prothectag that the parser will use, rather than

the true tag, and so some decrease in tag accuracy makes sense

The results become more confusing when we move to the naxbpeolumns, for F-score. In many
cases the default beta levels lead to higher F-scores,tedepiering tag accuracy. The changes are
not significant, but consider treFGs 2000k model in which tag accuracy is decreasing)t®y % and
F-score increases liy11%. This fits with the theory that adaptation is occurring, siitcsuggests the

words now being incorrectly tagged were going to be treatedriectly by the parser anyway.

What all this discussion is leading up to is contained in #s two columns, for speed. The results

in these columns follow the pattern in the column for amhiguihich fits with the initial aim of this
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Tag Accuracy Ambiguity Multi Tag Accuracy F-score Speed
(%) (cats / word) (%) (%) (sents / sec)
Data Default Default Default  Tuned  Default Tuned Default n&d
GIS
Ok 91.49 1.28 96.42 96.32 83.83 83.82 46.7 51.7
40k 91.62 1.24 96.16 96.36 84.07 84.05 58.9 56.9
400k 91.87 1.20 95.92 96.46 84.18 83.98 68.3 56.5
2000k 91.98 1.19 96.00 96.64 84.24 84.22 70.4 55.6
4000k 91.98 1.19 96.00 96.68 84.37 84.32 713 55.0
BFGS
Ok 91.38 1.27 96.30 96.29 83.73 83.73 49.3 52.1
40k 91.51 1.23 95.93 96.24 84.06 84.14 62.4 57.3
400k 91.46 1.12 94.63 96.12 83.68 83.89 95.2 60.4
2000k 91.95 1.16 95.61 96.52 84.42 8431 814 57.8
4000k 91.97 1.18 95.76 96.55 84.30 84.19 78.9 57.2
AP
Ok 91.41 1.04 92.58 95.65 78.32 83.74 136.0 59.2
40k 91.42 1.03 92.42 95.77 78.75 84.04 161.0 64.0
400k 91.68 1.02 92.34 96.08 7855 83.91 1640 629
MIRA
Ok 91.42 1.31 96.42 96.19 83.64 83.69 43.0 50.6
40k 91.61 1.24 96.09 96.25 83.96 83.93 58.7 56.7
400k 91.78 1.16 95.43 96.39 83.96 8392 774 57.5
2000k 91.83 1.13 95.26 96.60 83.96 84.11 85.1 56.8
4000k 91.93 1.12 95.09 96.62 83.99 84.10 90.2 55.0

TABLE 6.3: Performance comparison for models using default, medibeta levels.

work, to reduce ambiguity and thus improve speed. This detnates that while the decision to tune
the beta levels ensures a fair comparison, it means we argettotg the most out of the models that
we can. Also, the results in Table 6.3 for the Average Peroppgtased models clearly indicate that a
flexible strategy for beta level optimisation that is spedifi each model is required. Also, it would be

preferable to develop a strategy that does not require adgeahof gold standard data, as such resources

are expensive to produce.

The first step to developing such a strategy is to explore ¢he\dour of the parser and the supertagger,
something that has not been systematically done previouslyhe next section | take the first steps

towards a solution by exploring the behaviour of the parsesaxtion 00 of thevsa
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6.5 Aggregated Analysis of Parser Behaviour

| performed a series of tests to get some sense of the natuhe afata and how the parser behaves
as beta and the dictionary cutoff vary. | considered one reththeta values spaced logarithmically
betweenl.0 and0.0001, paired with twenty-two cutoffs betwednand211. For each pair | parsed all

of the sentences in section 00 of theJa

When considering the plots in the following sections not the colour scales vary between sets of
plots, to ensure an adequate range of colour is visible. Adsmember that the default beta levels and

dictionary cutoffs are as follows:

e 0.075, 20
0.030, 20
0.010, 20
0.005, 20
0.001, 150

6.5.1 All Sentences

The first set of plots, in Figure 6.1 consider the averagelteauaross all sentences in section 00. Am-
biguity appears as expected, smoothly increasing as tladdatl decreases, though it is interesting to
note how little difference the tag dictionary cutoff makparticularly at higher beta values. The cov-
erage plot is also sensible, showing loss of coverage omreside. The decrease on the left is due to
explosions as the number of tags assigned is too large. Tdneat on the right is caused by sentences
that the parser fails to find a spanning analysis for, as thgeraf options provided by the supertagger

is too small.

The next three plots, precision, recall and F-score, akhihg same scale for more convenient compar-
ison. The F-score plot is dominated by the recall variatiovisich are caused by the loss of coverage.
Based on these results it appears as if there is only a veiedirband in which high performance is
possible, but while this may be the case for a single betd & dictionary cutoff, in fact the system
has five such levels. This makes it difficult to draw conclasiérom these plots, as a sentence that is

not parsed for one pair of parameters may be parsed by arfhredt doesn’'t make sense to penalise
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the first pair on accuracy for sentences that are not pardbdtdevel, as those sentences have not been

completely knocked out.

The supertag accuracy plot is presumably dominated by terage issues as well, as the accuracy here
is calculated based on the final set of tags the parser usealyi-the plot for parsing time follows the
same pattern as the ambiguity plot. This makes sense asgher the ambiguity the larger the number

of possible derivations the parser must consider.

6.5.2 Only Successfully Parsed Sentences

If we average over only the sentences that were parsed apeattwe remove the dominating effect of
coverage, producing the plots in Figure 6.2. No plot is ideltifor coverage, as we are only considering
sentences that are parsed. The trends in the ambiguity asidgpéime plots do not change significantly,
but the maximum time i85% lower, and is not approached until further to the right. Tikidue to the
removal of the times for sentences that exploded. It may aecuoprising, but it does demonstrate the

cost of exploding.

The next three plots, for accuracy, recall and F-score, ghaonsiderably. Note the extreme change
in scale, from a lower end @f.72 in the previous set of plots @82 here. Interestingly there is still a

slight decrease in recall on the far right, but overall that [ much more similar to the precision plot.

An interesting pattern that can be seen in the previous sabtd as well as here is the drop in perfor-
mance when decreasing the tag dictionary cutoff fidno 1. This is presumably just the result of noise

in the data, which is lost once the cutoff is actually in use.

While these plots avoid the coverage issue of the previdiighey introduce a new issue — no two points
on the plot are actually directly comparable. The sentebeé®y used in the calculations at one point
are not the same as those used at another point. This is asisoie because the sentences being parsed

further to the right are generally shorter, easier sentembich explains why accuracy is so high.

6.5.3 Only Sentences Always Parsed

It turns out thatl, 318 of the 1,913 sentences in section 00 are parsed at all points in these fat
only using sentences that are always parsed is an easy wagitbthe coverage issue, and the need to

have the same sentences used for every measurement.
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FIGURE 6.2: Parsing behaviour over parsed sentences in sectiohtbéwsa.

The changes observed between the two previous sets of plotieee here. Now accuracy is varying
between’5% and91%, compared t®2% and86% in the previous set. Parsing time is only extending
up t00.13 seconds, rather thanl5. And supertag accuracy has increased as well. No major ekdng
the patterns are observed, with the exception of parsing, tivhere the increase is concentrated further
to the left of the plot. This is probably a result of the comxihe of the sentences being excluded from

this plot, and is explored further in the following section.
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FIGURE 6.3: Average parsing behaviour for parsed sentences iiosdif of thewsJ

While the sentences these plots are based on make up morémbahirds of the set, they are not
actually our primary concern when choosing parametersy @he important for the choice of the first

level, but irrelevant after that, since all of these sengsrare guaranteed to be parsed at the first level.
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Min Length Max Length Total Always Parsed

1 12 288 287
13 17 314 310
18 21 289 283
22 26 321 258
27 33 361 160
34 250 340 20

TABLE 6.4: Break down of data based on sentence length.

6.6 Behaviour by Sentence Length

Parsing efficiency is heavily dependent on sentence lerigthger sentences are generally more com-
plex and therefore more time consuming and difficult to pardéthe moment the parser functions
exactly the same for longer sentences as it does for shamgersces. By using different parameters

depending on the length of the sentence we may be able tonprexelosions for larger sentences.

Table 6.4 summarises the six sets the sentences were dimided hese ranges were chosen to balance
the size of the sets as much as possible. This table alonesnitaddear that different strategies may
be needed depending on sentence length. Almost all of thersms containing less than twenty two
words are parsed regardless of the parameters used; lessatiaf the sentences that are twenty two

words or longer have such flexibility.

As before, more than one set of plots have been included. Tétest provides the results for all
sentences, while the second set are based on only senthatasmays receive a parse. The second set
considered in the previous section, calculated based dheabentences parsed at each point, has not
been included for the reason raised in the previous seciida difficult to draw meaningful conclusions

when the set of sentences being used is varying across thie. gra

Also note that the plots have been ordered by row from lefigbtr This means the top left plot is for
sentences of lengthto 12, the top middle plot is for sentences of lengthto 17, the top right plot is

for sentences of lengtt8 to 21 and so on.

6.6.1 All Sentences

Not all of the metrics have been included either. Ambiguititdwed the same trends in all cases,

and precision also displayed very similar trends, thoughetiwas an overall decrease in precision as
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FIGURE 6.4: Stats by length for coverage, over all sentences.

sentence length increased. Finally, plots of F-score havdeen included as they are dominated by

recall and add little extra information.

The breakdown for coverage clearly demonstrates that ttsepbehaves quite differently depending on
sentence length. For the first three plots there is almosteoedse in coverage on the left hand side,
and only a slight decrease on the right. This indicates thratiorter sentences the parser’s chart rarely
explodes and so the only problem for coverage is when theetiaig 800 restrictive and so no spanning

analysis can be formed.

Meanwhile, longer sentences experience major issues &sglset grows. This makes sense, as a slight
increase in tag set size across a long sentence will leadrtg neav potential derivations. This decrease
in coverage for smaller beta values is important to remerfdrahe following analysis, particularly for

the longest sentences, as it will decrease performancd othat metrics.

The next set of plots, for accuracy of the final supertag sed lxy the parser, are slightly surprising.
As in the previous section, we observe a decrease in accasaoe move left from the centre of the
plot, suggesting that given more options, the parser idilesly to make the right choice. Interestingly
the parser is better at the medium length sentences tharntineest group, particularly for high tag
dictionary cutoffs and low beta levels, where the lowestltesf all the plots is found. As expected,

results for the longest sentences are noticeably poorenghiout.
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FIGURE 6.5: Stats by length for supertag accuracy, over all seatenc
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FIGURE 6.6: Stats by length for recall, over all sentences.

The results for recall largely mirror the observations ie finevious section. For the shorter sentences,
where coverage is not a major issue, the plots generallyctafie trends in supertag accuracy. For
longer sentences the plots are dominated by the senteratemé¢tonly parsed in a narrow range outside

of which either explosions occur, or no spanning analysisb&afound.
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FIGURE 6.7: Stats by length for speed, over all sentences.

Finally, the results for speed are as expected. The longentarsce is the longer it takes to parse. It is
worth noting the particularly bad performance for the Iastggntences, which are slow to parse even at

the highest beta levels.

6.6.2 Only Sentences Always Parsed

As for the previous set of results, ambiguity plots for senés that are always parsed are not included
as they demonstrate the same trends as previously. Alsgpder results are very similar to those in

the previous section, with the exception that the penaltydiager sentences is no longer as bad.

The most significant difference between the supertag acgpiats in Figure 6.8 and those in Figure 6.5
is the improvement for longer sentences. This makes sesske &entences that are not always parsed
are the hard ones, and ignoring them should provide a bopstrformance. It is slightly surprising how
great a difference it makes, since these plots show acctioadiie longer sentences as actually better

than for shorter sentences.

Plots for precision have been included in this section bee#here is a lot more going on. The impressive
decrease in performance in the top right plot indicatesratigit the parser is more likely to make the
wrong decision when given more choice. The most likely raa®o this trend being less visible in

the second row of plots, for longer sentences, is that thgeparchart explodes at that point and those

sentences are ignored for these plots. There is some parlycatrange behaviour in the bottom left
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FIGURE 6.9: Stats by length for precision, over parsed sentences.

plot, where at the lower beta levels precision drops as ttaffda raised, but then improves again. The
reason for this is unknown, though it could be a quirk of theteeces being used, since for the lower

row a considerable number of sentences are being ignored.

Now that the sentences that are not always parsed are igweredn see very different trends for recall.
Instead we observe patterns similar to those in the precigiots and no other particularly strange

behaviour. Since the precision and recall plots are soaipglots of F-score have not been included.
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FIGURE 6.10: Stats by length for recall, over parsed sentences.
6.7 Interesting Sentences

The exploration so far has focused on aggregated behavioassalarger sets of sentences. The problem
with this approach is that it is dominated by the common ¢asgmrticular the sentences that are parsed
regardless of the parameters used. In this section | carsidee specific examples to explore the factors

affecting accuracy.

6.7.1 Sentence 12

Before considering the exceptional cases it is worth c@msig one of the common cases — a sentence

that is parsed for all the parameter pairs considered. Titersee | have chosen is:

We have no useful informati on on whether users are at risk
, said Janes A Talcott of Boston 's Dana-Farber Cancer

Institute .

The gold standardostags assigned to each word in CCGBank are:

We| PRP have| VBP no| DT useful | JJ information| NN on| N
whet her | I N users| NNS are| VBP at|IN risk|NN,|, said|VBD
James| NNP A. | NNP Tal cott| NNP of | I N Boston| NNP ' s| POS
Dana- Far ber | NNP Cancer | NNP I nstitute| NNP . |.
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FIGURE 6.11: Parsing behaviour for the sentence 12 sentence iors@¢t.

In this example there were no errors made by the G&Gtagger, as is the case for slightly more than

half the sentences in section 00. The gold standard supeatag

V| PRP| NP have| VBP| (S[dcl ]\ NP)/ NP no| DT| NP[ nb] / N
useful | JJ| NV N i nformation| NN| N on| I N (NP\ NP)/S[gen]
whet her | IN S[gen]/ S[dcl] users|NNS| N are| VBP| (S[dcl ]\ NP)/ PP
at| INPP/NP risk|] NNJN,|,|, said|VBD (S[dcl]\ S[dcl])/NP
Janmes| NNP| N/ N A. | NNP| N/ N Tal cott | NNP| N of | I N| (NP\ NP) / NP
Bost on| NNP| N " s| POS| (NP[ nb] / N)\ NP Dana- Far ber | NNP| N' N
Cancer | NNP| NN Institute| NNP|N .|.].

Since this example is parsed everywhere and in the same keagpterage, F-score, precision, recall
and supertag accuracy plots have not been included. Forthlbse metrics this sentence had a perfect

score.

The ambiguity plot appears very similar to the average plotssidered in the previous sections. Tag
dictionary cutoff appears to have very little effect, whilecreasing the beta value smoothly increases
the ambiguity. Also, as observed previously, the parsimgetplot follows the same patterns as the

ambiguity plot.

6.7.2 Sentence 577

This sentence demonstrates the power ofthetagger. The sentence is:

One clains he 's pro-choice .
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FIGURE 6.12: Parsing behaviour for the sentence 577 sentencetinrs@0.

The gold standardostags are:

One| NN cl ai ns| VBZ he| PRP ' s| VBZ pro-choice|JJ .|.

The C&Cprostagger makes two mistakes:

e One, NNto CD
e claims, VBZ to NNS

By misinterpreting the wor@ne as a number, rather than a noun, Hestagger has thrown a serious

spanner in the works. The mistake is understandablenasvould be a number in most sentences.

This sentence is parsed for all pairs of parameters testédasbFigure 6.12 shows, the behaviour is

slightly odd.

The gold standard supertags and labelled dependencies are:
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One| NN| N

cl ai ms| VBZ| (S[dcl]\ NP)/S[dcl]

he| PRP| NP

"s| VBZ| (S[dcl ]\ NP)/(S[adj]\ NP)

pro-choice|JJ| S[adj]\ NP

el

claims_2 (S[dcl]\ NP)/S[dcl] 2 "s_4

clainms_2 (S[dcl]\ NP)/S[dcl] 1 One_1

"s_4 (S[dcl]\ NP)/(S[adj]\ NP) 1 he_3

"s 4 (S[dcl]\ NP)/(S[adj]\ NP) 2 pro-choice 5
pro-choice 5 S[adj]\ NP 1 he_3

In the region furthest to the right the supertagger only 8apmne tag per word. The mistakes made by
the Postagger lead it to treadne cl ai ns as a noun, wheréne is modifyingcl ai ms. With the last

four tags correct the parser is able to identify some of thieecbdependencies, as shown below.

One| CD| N/ N

cl ai ms| NNS| N

he| PRP| NP

"s| VBZ| (S[dcl ]\ NP)/(S[adj]\ NP)
pro-choice|JJ| S[adj]\ NP

el

Onhe 1 (NNN) 1 clains_2

's 4 (NP\ NP) 1 clains_ 2

"s_4 ((S[dcl]\ NP)/(S[adj]\ NP)) 1 he_3

"s 4 ((S[dcl]\ NP)/(S[adj]\ NP)) 2 pro-choice 5
pro-choice 5 (S[adj]\ NP) 1 he_3

In the middle region, where F-score falls dramatically, shpertagger has the flexibility to assign extra

tags:
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One - NN, (S/S)/(S/'S)
claims - N
he - NP
s - (S[dcl]\ NP)/(S[adj]\ NP), (S[dcl]\ NP)/NP
pro-choice - S adj]\ NP, (S\ NP)
(S\ NP), N, (S[adj]\ NP)/S[dcl]

However, this simply misleads the parser, which choosesigatien using one more incorrect tag than

previously:

One| CD| N/ N
cl ai ms| NNS| N
he| PRP| NP
"s| VBZ| (S[dcl ]\ NP)/ NP
pro-choice|JJ| S[adj]\ NP
el

Ohe 1 (NNN) 1 clains_ 2

"s_4 ((S[dcl]\ NP)/NP) 1 he_3

"s 4 ((S[dcl]\ NP)/NP) 2 clainms 2
pro-choice 5 (S[adj]\ NP) 1 clains_2

In the left-most region the supertagger finally has enougtibildy to give all of the correct tags as
options, which the parser is able to combine into the comecivation. Importantly, tests where the
parser was given the correct supertags led to the correigatien, and when the supertagger was given

the correctrostags it produced the right supertags.

Clearly an improvement at either of the earlier stages edtlito an improvement in parser performance.
The other important feature of this example is that proydimore supertags is not always best — if they

are not the correct supertags they may simply mislead treepar
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6.7.3 Sentence 1791

This sentence demonstrates interesting behaviour by tisempand provides one possible explanation

for the accuracy improvements described in the previouptehia results. The sentence is:

I f the Japanese conpani es are seriously considering their
survival , they could do at |least three things to inprove the
situation : raise salaries higher than those of financi al
institutions ; inprove working conditions -LRB- better offices
and nore vacations , for exanple -RRB- ; accept and hire nore

| abor from outside Japan .

With gold standardostags it is:

If| 1IN the| DT Japanese|JJ conpani es| NNS are| VBP seriousl y| RB

consi dering| VBG t heir| PRP$ survival |[NN,|, they| PRP coul d| MD
do| VB at|IN |l east|JJS three| CD things| NNS to| TO i nprove| VB
the| DT situation|NN :|: raise|VB salaries|NNS higher|JJR

than| I N those| DT of | IN financial|JJ institutions|NNS ;|;

i mprove| VB wor ki ng| NN condi tions| NNS - LRB-| LRB better|JJR
of fi ces| NNS and| CC nore| JJR vacations|NNS , |, for|IN
exanpl e] NN -RRB-| RRB ;| ; accept| VB and| CC hire| VB nore| JJR
[ abor | NN from I N outsi de|JJ Japan| NNP . |.

Ourpostagger produces the same results for all words except ttenviol:

e ,:—IN

e working, NN — VBG
e -LRB-,LRB-JJ

e -RRB-, RRB — NNP
e outside, JJ - IN

Interestingly, Figure 6.13 shows that the only times thigesgces receives a parse are when the supertags
chosen by the parser are incorrect. At all other times edhexxplosion occurs or no spanning analysis
can be found. In this case if the supertagger supplies theatdags we will fail to find an analysis, but

if it had been trained to supply the tags that the parser wiaate would find an analysis. Cases like this

could be the reason for the observed accuracy improvemaritggdhe adaptive training experiments.
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FIGURE 6.13: Parsing behaviour for the 179%entence in section 00.

6.7.4 Sentence 212

In the sentence;

The U.S. , clainmng sone success inits trade di pl omacy
, renmoved South Korea , Taiwan and Saudi Arabia froma
list of countries it is closely watching for allegedly
failing to honor U S. patents , copyrights and ot her

intellectual -property rights

Despite nopPOsStagging errors, we observe strange patterns in supertagaagc In the area of low
F-score to the left in Figure 6.14 the parser is experienamgxplosion, and in the area to the right no
spanning analysis is found. This is strange as those aré@airéas where the supertags chosen by the
parser are least accurate. Meanwhile the point of lowesrsag accuracy and the line of low accuracy

above it does not prevent a parse from being found.
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FIGURE 6.14: Parsing behaviour for the sentence 212 sentencetinrs@0.

The speed plot also demonstrates strange behaviour. Theahd of particularly slow processing lines
up with the edge of the region in which a parse is found. Thipgdabably a peak because after this the

explosion occurs early enough for time to be saved, but iflisgd.

6.7.5 Sentence 274

Despite being extremely short and rostag errors occurring, the following sentence displays some

surprising behaviour:

Previously , watch inports were deni ed such duty-free

treat nent

In Figure 6.15 the blue areas are caused by the parser fadlifigd a spanning analysis. What makes
this so strange is that the supertag accuracy is the same mitldle area as it is in the top right, where
the parser fails to find a spanning analysis. Also, the spagdssstrangely across the bottom of the plot,

increasing more rapidly for slightly higher cutoffs, despio noticeable change in ambiguity.
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Ambiguity F-score
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FIGURE 6.15: Parsing behaviour for the sentence 274 sentencetinrs@0.

6.7.6 Sentence 302

This sentence is an example of a more complex case of thenseri@?7:

First , they are designed to elininate the risk of prepaynent
- nortgage-backed securities can be retired early if interest
rates decline , and such prepaynent forces investors to

redepl oy their noney at |ower rates

The postagger mislabel$ or ces as a noun instead of as a verb, &id st as an adverb instead of
as an adjective. The strange behaviour shown in Figure 6.&6résult of the supertagger gradually
providing more tags and the parser doing gymnastics to getdirect derivation. Being longer than
sentence 577 there is more scope for variation, as we see pidtifor F-score, which has many regions,

bounded vertically and horizontally by points at which thpertagger is able to change the tag set.
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FIGURE 6.16: Parsing behaviour for the sentence 302 sentencetinrs@0.

6.7.7 Sentence 596

This sentence demonstrates similar strange behaviountense 212:

That comercial - which said M. Col enan wanted to take
away the right of abortion even in cases of rape and incest
, a charge M. Col eman deni es - changed t he dynam cs of
the canpaign , transforming it , at least in part , into a

ref erendum on abortion

In Figure 6.17 in the left area the parser experiences arosxyl, and in the right area no spanning
analysis is found. Strangely, the region in which supertecuiacy is lowest is in neither of these
regions and does not actually seem to influence F-score.aWsdlalso observe that speed increases
considerably towards the edges of the region in which a gars®ind, then drops away and remains

fairly constant in the explosion area.



6.7 INTERESTINGSENTENCES 76

Ambiguity F-score
211 8 211 1
181 7 181 8-32
151 6 = 151 0.94
S
5 121 5 8 F121 8-32
3 91 49 3 9 0.88
o]
61 3 < 61 0.86
0.84
31 2 31 0.82
1 1 1 0.8
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Beta Beta
Supertag Accuracy Parsing Time
211 1 211 1
181 0.99 181 08
151 0.98 151
£ 121 0.97 & 151 0.6
I 0.96 5
61 0.94 61 02
31 0.93 31 '
1 0.92 1 0
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Beta Beta

FIGURE 6.17: Parsing behaviour for the sentence 596 sentencetinrs@0.

6.7.8 Sentence 691

The final sentence | consider is one of the most strange:

In her wake she left the bitterness and anger of a principal
who was her friend and now calls her a betrayer ; of
col | eagues who say she brought them shane ; of students and
parents who defended her and insist she was treated harshly

; and of school -district officials stunned that despite the
bal d-faced nature of her actions , she becane sonething of a

| ocal martyr

A single postag error is made st unned is labelled as a verb instead of as an adjective. Across the
very bottom and in the top right area no spanning analysieusad, while in the left area explosions

occur.
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In all the other areas we get a variety of strange patterns.pfécision and recall above a tag dictionary
cutoff of 31 appear to be the reverse of the supertag accuracy. The thimeaf higher recall and
precision is where supertag accuracy is lowest and in tHemegvhere supertag accuracy is highest the

parser fails either because of explosions or not being alflertn a spanning analysis.

Speed also exhibits strange behaviour, following the sémthe F-score plot more than in the ambiguity
plot as would be expected. In particular, the time takengases much sooner below a tag dictionary

cutoff of 31.
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FIGURE 6.18: Parsing behaviour for the sentence 691 sentencetiors@0.
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6.8 Optimal Coverage Algorithm

Initially | focused on choosing beta levels that would maisinspeed while achieving full coverage.
Using a set of sentences representative of the target cdhmualgorithm translates each sentence into a

line segment, and then locates a set of points such that Brergegment contains a point.

To translate each sentence into a line segment involves itvamybsearches on beta levels. The first is
for the largest beta value before a spanning analysis isonoidf The second is for the last beta value
before the number of tags assigned leads to a chart exploBl@se values define a line segment over

which the sentence is successfully parsed.

Now our problem is essentially to determine a set of poirds tingether allow all of the sentences to be
parsed. We would also like these values to be as large adpmsas it is expected that larger values will

lead to a speed improvement. Both of these goals can be adhigvthe following greedy algorithm:

e Initially label all line segments as uncovered
e Create an empty listext
e For each of the endpoints in all of the lines, in sorted insirggaorder:
— Ifitis the point at which the chart explodes, add ittext
— Otherwise, if itis uncovered, set this value as a beta lewel label all of the line segments

in next as covered

6.8.1 Correctness

To show that the algorithm is correct two points must be pilo¥iest that every line segment contains a

point, and second that the set of points chosen are optimal.

Every line segment is added to thext list at some point, since we iterate through all endpoirid, far
the first endpoint of each segment we place the segment iirsth#dhen a beta level is chosen it covers
all sentences in theext list, since they can be parsed at this level. Also, if themamy elements in
thenext list there must be an uncovered endpoint still to be consilesince the segments in thext

list are all uncovered and only one of their endpoints hawntsz=en. Therefore every segment will be

placed in thenext list at some point, and every segment placed invihet list will be covered.
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To prove optimality consider the order in which the algaritiyenerates points. Every line segment
must contain a point, therefore the line segment that hasrttadlest starting beta value creates a limit
on the lowest beta level. It cannot be any higher than thakeyaitherwise the sentence that line segment
corresponds to would not be parsed. Therefore we must pldtaalevel at that value, which the
algorithm does. All other sentences that can be parsed aptint can now be ignored, since they
will definitely be parsed. Now we have the same problem amllyit but on a smaller set. Repeated
application will lead to all segments containing a poing aone of the points can be removed, or moved

any higher without causing a sentence to not be parsed. fohethe set of points chosen is optimal

6.8.2 Results

Using this algorithm and the results of the analysis fromphavious section | performed a series of
tests. Since this algorithm does not consider tag dictioatoff | ran separate tests at each of the
cutoffs used in the tests above. Since all of the behaviats teere performed with the baseline model,

these tests were also performed with the baseline.

Table 6.5 clearly shows that this method is not perfect, basgroduce fairly effective beta levels. With
the exception of the first cutoff, coverage is at I€858% and most of the tests produce similar coverage
to the baseline model. Interestingly the tests with morelfeperform considerably better and are the
only cases that out-perform the baseline. The best of theseneter sets does perform slightly worse,
as shown in Table 6.6, but makes even more impressive spéaesl@aWikipedia, while maintaining

coverage aboves.5%.

6.8.3 Issues

Based on these results it seems that coverage optimisdgioritam is working, providing a speed boost
while maintaining high coverage. However, we are not abtuggtting quite what we want. The main
issue is that complete coverage is actually too weak a rempgint — we want to get the right parse,
not just any parse. Also, while the method will guaranteeecage for the sentences used, it is unclear
how large the set needs to be to ensure good generalisatian émtire corpus. The other potential
factor, optimising the dictionary cutoff does not appedbdca major issue. In general it appears the tag
dictionary cutoff has very little influence on speed or aacyy with the exception of extremely low and
high values, which exhibit irregular behaviour. This isfusbecause it means we can effectively ignore

the cutoff values and optimise the beta values alone.
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Betas Number Parsed FailedvsiSpeed
Cutoff 1 2 3 4 5 1 2 3 4 5 (sents / sec)

Baseline 0.075 0.03 0.01 0.005 0.001 9042 282 262 99 167 148 .5 48

1 0.25 0.017 0.0058 0.0010 0.00012 7195 1202 314 286 171 832 4 40

11 0.63 0.017 0.0018 0.00012 — 7338 2025 334 83 - 220 45.1
21 0.17 0.017 0.0018 0.00012 — 8647 823 295 67 - 168 48.3
31 0.30 0.023 0.0058 0.0018 0.00012 8300 1151 242 106 57 144 .6 49
41 0.30 0.023 0.0058 0.0018 0.00012 8335 1143 240 101 55 126 4 49
51 0.30 0.023 0.0058 0.0018 0.00019 8361 1133 233 100 45 128 9 49
61 0.30 0.023 0.0058 0.0018 0.00019 8375 1125 228 96 47 129 4 49,
71 0.30 0.023 0.0058 0.0018 0.00019 8383 1124 225 95 44 129 0 49.
81 0.30 0.017 0.0018 0.00015 — 8393 1170 244 48 - 145 44.1
91 0.30 0.017 0.0018 0.00015 — 8397 1172 240 47 - 144 43.3
101 0.30 0.017 0.0018 0.00015 — 8412 1167 235 42 - 144 43.2
111 0.30 0.017 0.0018 0.00015 — 8411 1169 237 41 - 142 42.8
121 0.30 0.017 0.0018 0.00015 — 8417 1166 234 39 - 144 42.6
131 0.30 0.017 0.0018 0.00015 — 8426 1158 229 40 - 147 42.0
141 0.30 0.017 0.0018 0.00015 — 8426 1158 229 40 - 147 42.0
151 0.30 0.017 0.0018 0.00015 — 8427 1157 229 39 - 148 41.7
161 0.40 0.021 0.0018 0.00015 — 8205 1348 260 38 - 149 41.5
171 0.40 0.021 0.0018 0.00015 — 8207 1345 256 37 - 155 40.8
181 0.40 0.021 0.0018 0.00015 — 8207 1345 257 36 - 155 40.7
191 0.40 0.021 0.0018 0.00015 — 8212 1342 256 35 - 155 40.3
201 0.40 0.021 0.0018 0.00015 — 8212 1342 254 35 - 157 40.0
211 0.40 0.023 0.0018 0.00015 — 8213 1320 271 36 - 160 39.3

TABLE 6.5: Speed and coverage for the parameters produced byubeage optimi-
sation algorithm.

Supertag Accuracy Ambiguity  F-score Speed
(%) (cats/word) (%)  (sent/sec)
Set Single Multiple
WSJ
Baseline 91.14 96.07 1.27 83.41 48.5
Cutoff51 91.14 94.13 1.10 83.15 49.9
Wikipedia
Baseline 89.8 95.4 1.3 82.5 46.31
Cutoff 51  89.8 93.2 11 81.3 53.6

TABLE 6.6: Performance of the best parameters produced by theagm/eptimisation algorithm.
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However, we are still faced with the problem of accuracy gsospd to coverage. A simple approach
would be to shift the two endpoints defining our line segmertadver only the values where accuracy
is above some threshold. While this idea is valid for the &ndleta value, it is not for the larger one.

Moving the larger value is not possible because that doepregent the sentence from being parsed in
that region, and we may choose a beta level in that regioreag#ult of some other sentence. Therefore
we cannot guarantee that the level within the shortenedsiggnent is the level that sentence will be
parsed at. We can move the lower value because the beta \elldi® considered in decreasing order

and so the sentence will be parsed before we reach any bets iethe ignored lower region.

The algorithm developed here may be a step in the right drgdbut it is not a complete solution to the

challenge of optimising these parameters.

6.9 Summary

Optimisation of the beta levels and tag dictionary cutofediby the supertagger leads to considerable
improvements in efficiency. Developing a method of optinidgais made difficult by the fact that there
are five levels and while most sentences exhibit similar Wieba at all levels, some will be parsed
progressively less accurately, while others are parsegrgssively more accurately. The investigation
presented in this chapter is the first attempt to systeniigtiesplore this behaviour. If we can use these
observations to improve the interaction between the pamsdrsupertagger we will obtain significant

speed and accuracy benefits.

The architectural developments described in the previaeschapters have enabled the creation of
models with more features as we are no longer bound by ther@mbaAam on a single machine. This
chapter also explored a range of features, including featats that produced a statistically significant
improvement in recall. In this way we are able to use adajptaieing to improve accuracy as well as

speed.



CHAPTER 7

Conclusion

7.1 Future Work

A wide range of directions exist for extension of this workhefe is great scope for development of
the algorithms, many other domains to apply the adaptatainibg method to, and the exploration of

parameter optimisation here lays the groundwork for a gieat of further investigation.

The most direct extension would be to apply these adaptieitig methods to the biomedical domain.
A large collection of documents from the domain and an evaloaet already exist, making it a sensible
next step. Cross-corpus tests on they Wikipedia and the PubMed corpus would provide greater

evidence for the adaptation results presented here.

The pre-processing methods of sentence boundary detettl@misation used here were very simple,
which may be decreasing the quality of the automaticallgllad data. The next stage in the process,
using the parser to choose tags would also be worth invéisiighurther. Since this stage only needs
to run once to produce the training set it may be worth logggnéstrictions on the parser to produce
better results at a slower rate. This would provider grestepe for exploring which sentences provide

the most benefit for adaptive training.

This work has clearly demonstrated that gold standard datamake a significant difference to accuracy
on newspaper text, even when it makes up less thaof the training data. Open questions include how
much gold standard data is needed to make a significantetiffer and how much difference data with
gold standardostags and automatically assigned supertags would makehdfuit adaptive training
of thepostagger possible? Specifically, using the supertagger torimthepostagger in the same way
that in this work the parser has been used to inform the saguget. In this case the aim would be to

produce the set dfostags that will lead the supertagger to produce a more aecaetiof supertags.

83
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Now that we have a range of different algorithms for modeheation it would be worth performing
co-training experiments. Each model could be trained ongthld standard data, then used to parse
extra data incrementally. The results of all of the modelddbe compared and when there is complete
agreement, or at least a majority, the instance would betkiddee training set and the process repeated.
Another option would be to simply feed the results from onadetdnto all others, effectively allowing

all of the models to develop with some cross-pollinationagfging behaviour. A simpler method that
takes a different tack would be to train a model using onerdlgo, then use the final weights as the
initial weighs for another algorithm, perhaps leading toedtdr local optimum. Finally, the whole
training process could be kept entirely separate and theepaould determine the tag set by using

multiple taggers, one for each model.

Additionally, the current system takes the weights produog the perceptron algorithms, normalises
them and treats them as a probability distribution in theesauaty as the weights fromis andBrGsare
treated. The results here have shown that while fast, staglging is not accurate enough to be effec-
tive, but perhaps a multi-tagging perceptron algorithmlddne implemented. For example, instead of
producing tag—word pairs, the model could produce tagsaehpairs, and the predicted tagsets would
be judged correct simply if they contained the correct talis particular method would dramatically
increase the number of possible labels and so may be infeabilt other approaches, such as always
providing tags with weights within a certain ratio of the tgg and then adjusting both if neither is

correct, may be effective.

The training method for the perceptron based algorithmedseimental, taking an existing model and
adjusting it after each observation. This means they cooidirtue to adapt as the parser is running,
effectively learning continuously. It would be interegtito apply this method to the adaptive training
experiments here and measure performance and changegjiimgtédghaviour over time, to observe the

tagger adapting to the new domain.

These algorithms are also very flexible, and another infiegeyariation would be to tag an entire
sentence at once by combining sums of local features totwtc create global features. Even at
a local scale there is great scope for further investigatidthile the initial tests here have not lead
to overwhelmingly positive results, there is a great deatxdfa data that could be used. The variety
of features considered was also somewhat limited, parté/ tduhe current architecture for defining
features. It would be interesting to explore the use of @dbshes as representations of features to

enable the use of a more diverse range of features. For ezafaatures that encode the presence of one
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attribute and the absence of another. Also, many of the mufeatures contribute little to the model,
with weights close to or exactly zero. Feature selectioriccouprove performance, or at least free up

memory usage by the supertagger, potentially enablinggbefiother, more exotic features.

The exploration in the analysis chapter laid the groundworka great deal of work not only for the
supertagger, but also for the parser. The challenge of oieivel an effective and well founded method
of optimising the beta levels and cutoffs remains unsolvée exploration of some of the stranger
cases indicated that there are specific issues in all aightfrom thepostagger up. The length-based
analysis suggested that different settings depending rigtHemay be worthwhile. It would also be

interesting to compare the behaviour of various models.

7.2 Contributions

| have demonstrated that adaptively training a supertalggests parsing speed and accuracy consider-
ably. | have demonstrated that perceptron based algoridam®stimate model weights just as well as
maximum entropy methods. | have taken the first steps towaardsthodical exploration of the effects
of beta levels on parser behaviour. And in the process of tating this work, | have made significant
changes to a high performance state-of-the-art systenuding implementing new weight estimation

methods, and parallelising the supertagger training ggce

The key contribution is the demonstration that adaptivimitng improves parser efficiency. The strat-
egy of constructing a supertagging model that second-gadke parser is novel and clearly effective.
Importantly, these effects are not confined to a single dontait have been demonstrated on Wikipedia
text as well as newspaper text. It is also clear that the sagger is adapting to the particular style of
the domain it trains on, as models trained on Wikipedia perfpoorly on the Wall Street Journal, and

vice versa.

These experiments were not possible previously becausewfony and time constraints. The second
major contribution of this work was the implementation deahative algorithms and a parallel form
of the training process. These developments enabled thefuse larger data sets within the same
training time and provided access to memv. As well as implementing these methods, this work has

demonstrated that they produce models that are just asade@s previous models.
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The third significant contribution is an exploration of thepertagger and parser interaction. No such
comprehensive analysis has been performed previouslyhamésults of this work indicate that consid-

erable gains in performance are possible if an effectivensieboptimising the parameters can be found.
As part of this work an algorithm to optimise coverage wagirted and the challenges of extending the

method to optimise performance were explored.

Initially the system produced an F-score&3%41% and ran atl8.5 sentences per second on the Wall
Street Journal and produced an F-scor&82§% and ran ati6.3 sentences per second on Wikipedia.
The supertagging model that produced these results tookdwrs to train, using only forty thousand
sentences. UsingliRA a model was trained in six hours but on one hundred times a$ maia,
leading to an F-score &f3.99% and speed 090.2 sentences per second on tivel Another model
trained on Wikipedia instead of newspaper text was able teg6d.5 sentences a second and achieved
an F-score 0B83.3%. These models are just as accurate as the original systeanthebfirst is86%
faster on newspaper text and the secor)is faster on Wikipedia, clearly demonstrating that adaptive
training leads to considerable performance improvemeftsese developments will lead directly to
improvements in many other Natural Language Processingragsthat rely on the output of state-of-

the-art parsers, such as Question Answering systems.
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