Faster Parsing by Supertagger Adaptation

Jonathan K. Kummerfeld a Jessika Roesner b Tim Dawborn a James Haggerty a James R. Curran a* Stephen Clark c*

University of Sydney a University of Texas at Austin b University of Cambridge c

 $james@it.usyd.edu.au^{a*}$ stephen.clark@cl.cam.ac.uk c*

ACL 2010

We Need Faster Parsers

THE UNIVERSITY OF

Syntactic information is crucial for many tasks in NLP, such as QA and MT, but parsers are slow:

- State-of-the-art, typically < 1 sentence / sec
- Fastest state-of-the-art, < 50 sentences / sec

Far too slow to process the data available:

- > 1,000,000,000,000 words of English, Web1T
- More coming

Motivation

Core Idea

Results

Analysis 0000000 Conclusion

Combinatory Categorial Grammar

I ate pizza

Combinatory Categorial Grammar

$$\frac{I}{NP} \xrightarrow{\text{ate}} \frac{\text{pizza}}{NP} \\
\frac{S \setminus NP}{S} > \\
\frac{S \setminus NP}{S}$$

Combinatory Categorial Grammar

$$\frac{I}{NP} \frac{\text{ate}}{(S \backslash NP)/NP} \frac{\text{pizza}}{NP} \\
\frac{S \backslash NP}{S} \\$$

Combinatory Categorial Grammar

$$\frac{I}{NP} \xrightarrow{\text{ate}} \frac{\text{pizza}}{NP} \\
\frac{S \setminus NP}{S} > \\
\frac{S \setminus NP}{S}$$

Categories Encode Rich Lexical Information

I ate pizza with cutlery

I ate pizza with anchovies

Categories Encode Rich Lexical Information

$$\frac{I}{NP} \xrightarrow{\text{ate}} \frac{\text{pizza}}{NP} \xrightarrow{NP} \frac{\text{with}}{(S \backslash NP) \backslash (S \backslash NP))/NP} \xrightarrow{NP} \frac{(S \backslash NP) \backslash (S \backslash NP)}{NP} > \frac{S \backslash NP}{S} > \frac{S \backslash NP}{S}$$

Categories Encode Rich Lexical Information

Taggers Constrain the Search Space

Divide parsing into two tasks, where for n words, each with k tags:

- Tagging $O(nk^3)$
- Parsing $O(n^5k^2)$

The tagger considers a set of 429 categories

Ideal World - Perfect Supertagging

$$\frac{\text{Previously}}{S/S} \ , \ \text{watch} \ \frac{\text{imports}}{N} \ \frac{\text{were}}{(S[dcl] \backslash NP)/(S[pss] \backslash NP)} \ \frac{\text{denied}}{(S[pss] \backslash NP)/NP}$$

$$\frac{\text{such}}{NP/NP} \quad \frac{\text{duty-free}}{N/N} \quad \frac{\text{treatment}}{N}$$

Real World – Around 92% Accuracy

$$\frac{\text{Previously}}{S/S} \ , \ \frac{\text{watch}}{N} \ \frac{\text{imports}}{N} \ \frac{\text{were}}{(S[dcl] \backslash NP)/(S[pss] \backslash NP)} \ \frac{\text{denied}}{(S[pss] \backslash NP)/NP}$$

$$\frac{\text{such}}{NP/NP} \quad \frac{\text{duty-free}}{N/N} \quad \frac{\text{treatment}}{N}$$

Real World – Multitagging Prevents Coverage Loss

$$\begin{array}{c|c} \text{such} & \text{duty-free} \\ \hline \textbf{NP/NP} & \textbf{N/N} & \textbf{N} \\ \hline \\ ((S \backslash NP) \backslash (S \backslash NP)) / ((S \backslash NP) \backslash (S \backslash NP)) \\ & \\ (N/N) / (N/N) \\ & \\ N/N \\ & \\ (NP/NP) / (NP/NP) \\ \end{array}$$

Adaptive Supertagging

$$\frac{\text{such}}{\text{NP/NP}} \quad \frac{\text{duty-free}}{\text{N/N}} \quad \frac{\text{treatment}}{\text{N}}$$

$$N/N$$

10

Leave out Categories the Parser will not use

New Task:

- Target output the categories the baseline would use
- To create target output to train on, run the parser
- 4 million sentences (limited by volume of WSJ in NANC)

Previous Work

THE LINIVERSITY OF

Semi-supervised training has been used to improve parsing accuracy:

- Co-training, Sarkar (2001)
- Reranking, McClosky et al. (2006)
- Pipeline Iteration, Hollingshead and Roark (2007)

For efficiency improvement, van Noord (2009)

- Observe the parsing process for many sentences
- Only follow parsing steps observed for the training set

Baseline results for the C&C parser and supertagger

- Parse a large set of unannotated data
- Retrain the supertagger, using the parser annotated sentences
- Four discriminative training methods, GIS, BFGS, AP, MIRA

	F-score				Speed (sents / sec)			
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m
Base	85.46				39.6			
GIS								
BFGS								
MIRA								

Speed increases of up to 85%

- Parse a large set of unannotated data
- Retrain the supertagger, using the parser annotated sentences
- Four discriminative training methods, GIS, BFGS, AP, MIRA

F-score				Sp	eed (se	ents / s	ec)	
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m
Base	85.46				39.6			
GIS	85.44	85.46	85.58	85.62	37.4	44.1	51.3	54.1
BFGS	85.45	85.51	85.57	85.68	39.8	49.6	71.8	60.0
MIRA	85.44	85.40	85.38	85.42	34.1	44.8	60.2	73.3

Speed increases of up to 85%

- Parse a large set of unannotated data
- Retrain the supertagger, using the parser annotated sentences
- Four discriminative training methods, GIS, BFGS, AP, MIRA

F-score				Speed (sents / sec)				
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m
Base	85.46				39.6			
GIS	85.44	85.46	85.58	85.62	37.4	44.1	51.3	54.1
BFGS	85.45	85.51	85.57	85.68	39.8	49.6	71.8	60.0
MIRA	85.44	85.40	85.38	85.42	34.1	44.8	60.2	73.3

Speed increases of up to 85%

- Parse a large set of unannotated data
- Retrain the supertagger, using the parser annotated sentences
- Four discriminative training methods, GIS, BFGS, AP, MIRA

F-score				Speed (sents / sec)				
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m
Base	85.46				39.6			
GIS	85.44	85.46	85.58	85.62	37.4	44.1	51.3	54.1
BFGS	85.45	85.51	85.57	85.68	39.8	49.6	71.8	60.0
MIRA	85.44	85.40	85.38	85.42	34.1	44.8	60.2	73.3

Adjust Ambiguity to Trade Speed for Accuracy

- We are increasing speed by decreasing ambiguity
- Adjust system parameters to return ambiguity to baseline levels

	F-score				Sp	Speed (sents / sec)			
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m	
Baseline	85.46				39.6				
GIS	85.36	85.47	85.84	85.87	39.1	41.4	41.7	42.6	
BFGS	85.45	85.55	85.64	85.98	39.5	43.7	43.9	42.7	
Perceptron	85.28	85.39	85.64	-	45.9	48.0	45.2	-	
MIRA	85.47	85.45	85.55	85.84	37.7	41.4	41.4	42.9	

Adjust Ambiguity to Trade Speed for Accuracy

- We are increasing speed by decreasing ambiguity
- Adjust system parameters to return ambiguity to baseline levels

	F-score				Sp	Speed (sents / sec)			
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m	
Baseline	85.46				39.6				
GIS	85.36	85.47	85.84	85.87	39.1	41.4	41.7	42.6	
BFGS	85.45	85.55	85.64	85.98	39.5	43.7	43.9	42.7	
Perceptron	85.28	85.39	85.64	-	45.9	48.0	45.2	-	
MIRA	85.47	85.45	85.55	85.84	37.7	41.4	41.4	42.9	

Adjust Ambiguity to Trade Speed for Accuracy

- We are increasing speed by decreasing ambiguity
- Adjust system parameters to return ambiguity to baseline levels

	F-score				Sp	Speed (sents / sec)			
NANC Data	0k	40k	400k	4m	0k	40k	400k	4m	
Baseline	85.46				39.6				
GIS	85.36	85.47	85.84	85.87	39.1	41.4	41.7	42.6	
BFGS	85.45	85.55	85.64	85.98	39.5	43.7	43.9	42.7	
Perceptron	85.28	85.39	85.64	-	45.9	48.0	45.2	-	
MIRA	85.47	85.45	85.55	85.84	37.7	41.4	41.4	42.9	

The Approach Works on Multiple Domains

Training	Speed (sents / sec)				
Corpus	News	Wiki	Bio		
Baseline	39.6	50.9	35.1		
News	73.3	83.9	60.3		
Wiki	62.4	73.9	58.7		
Bio	66.2	90.4	59.3		

The Approach Works on Multiple Domains

•	Training	Speed (sents / sec)					
	Corpus	News	Wiki	Bio			
	Baseline	39.6	50.9	35.1			
	News	73.3	83.9	60.3			
	Wiki	62.4	73.9	58.7			
	Bio	66.2	90.4	59.3			

16

Adaptation is Domain Specific

Training		F-score	
Corpus	News	Wiki	Bio
Baseline	85.46	80.8	75.0
News	85.84	80.1	75.2
Wiki	85.02	81.7	75.8
Bio	84.95	80.6	76.1

16

Adaptation is Domain Specific

-	Training	F-score					
	Corpus	News	Wiki	Bio			
	Baseline	85.46	80.8	75.0			
	News	85.84	80.1	75.2			
	Wiki	85.02	81.7	75.8			
	Bio	84.95	80.6	76.1			

Motivation

re Idea

ılts 000 Analysis Cor

ision

17

The Parsing Process

Previously , watch imports

were

denied

such

duty-free treatment

Pass 1 – Minimum Ambiguity

$$\frac{\mathsf{Previously}}{S/S} \ , \ \frac{\mathsf{watch}}{N} \ \frac{\mathsf{imports}}{N} \ \frac{\mathsf{were}}{(S[dcl] \backslash NP)/(S[pss] \backslash NP)} \ \frac{\mathsf{denied}}{(S[pss] \backslash NP)/NP} \\ S[pss] \backslash NP \\ (S[pt] \backslash NP)/NP$$

Pass 2 – More Ambiguity

$$\frac{\text{Previously}}{S/S} \ , \ \frac{\text{watch}}{N} \ \frac{\text{imports}}{N} \ \frac{\text{were}}{(S[dcl] \backslash NP)/(S[pss] \backslash NP)} \ \frac{\text{denied}}{(S[pss] \backslash NP)/NP} \\ S[pss] \backslash NP \\ (S[pt] \backslash NP)/NP \\ (S[dcl] \backslash N$$

$$\frac{\text{such}}{NP/NP} \frac{\text{duty-free}}{N/N} \frac{\text{treatment}}{N}$$

$$((S \setminus NP) \setminus (S \setminus NP))/((S \setminus NP) \setminus (S \setminus NP))$$

$$(N/N)/(N/N)$$

Pass 3 – Further Ambiguity

$$\frac{\text{Previously}}{S/S} \ , \ \frac{\text{watch}}{N} \ \frac{\text{imports}}{N} \ \frac{\text{were}}{(S[dcl] \backslash NP)/(S[pss] \backslash NP)} \ \frac{\text{denied}}{(S[pss] \backslash NP)/NP} \\ S[pss] \backslash NP \\ (S[pt] \backslash NP)/NP \\ (S[dcl] \backslash N$$

$$\frac{\text{such}}{NP/NP} \frac{\text{duty-free}}{N/N} \frac{\text{treatment}}{N}$$

$$\frac{((S \backslash NP) \backslash (S \backslash NP)) / ((S \backslash NP) \backslash (S \backslash NP))}{(N/N) / (N/N)}$$

$$\frac{(N/N) / (N/N)}{N/N}$$

Pass 4 - Even More Ambiguity, Parsed at last!

```
\frac{\text{such}}{\text{NP/NP}} \frac{\text{duty-free}}{\text{N/N}} \frac{\text{treatment}}{\text{N}}
((S \setminus NP) \setminus (S \setminus NP)) / ((S \setminus NP) \setminus (S \setminus NP))
(N/N) / (N/N)
N/N
(NP/NP) / (NP/NP)
```

Parsing Sentences Earlier and/or With Lower Ambiguity

		Total ⁻	Time Chan	ge (s)
Pass	Ambiguity	Short	Medium	Long
	<	-1.1	-29	-26
Earlier	=	-0.095	-1.3	-0.44
	>	-0.40	-1.3	-0.31
	<	-2.8	-20	-30
Same	=	-0.28	0.30	0.44
	>	-0.037	0.34	0.099
	<	0.039	1.1	-2.5
Later	=	0.0019	0.0053	0.0
	>	-3.4e-5	0.033	0.16

Parsing Sentences Earlier and/or With Lower Ambiguity

		Total Time Change (s)		
Pass	Ambiguity	Short	Medium	Long
	<	-1.1	-29	-26
Earlier	=		-1.3	
	>		-1.3	
	<	-2.8	-20	-30
Same	=			
	>			
	<		1.1	-2.5
Later	=			
	>			

Improvement Relies on Parser Annotated Data

Annotation method	Cat. Acc.	F-score
Baseline	96.34	85.46
Parser	96.46	85.55
One-best super	95.94	85.24
Multi-tagger a	95.91	84.98
Multi-tagger \emph{b}	96.00	84.99

24

Conclusion

Metric	Base	Adaptive	Ratio
Ambiguity	1.267	1.126	0.89
Newswire Accuracy			
Cat. Acc. (%)	96.34	95.18	n/a
F-score (%)	85.46	85.42	n/a
Speed			
${ m WSJ}$ (sents $/$ sec)	39.6	73.3	1.85
Wikipedia (sents / sec)	50.9	83.9	1.65
Medline (sents / sec)	35.1	60.3	1.72

Conclusion

THE UNIVERSITY OF

Adaptive training improves parsing speed while retaining accuracy

- Works across multiple domains
- No extra manually annotated data
- Enables accuracy gains while retaining high speed

- Australian Research Council, Discovery Grants DP0665973 and DP1097291
- Capital Markets Cooperative Research Centre
- Johns Hopkins University, CLSP Summer Workshop
- National Science Foundation, Grant Number IIS-0833652.

THE UNIVERSITY OF SYDNEY

Model	Cat. Acc.	F-score	Speed
	(%)	(%)	(sents/sec)
Baseline	96.51	85.20	39.6
GIS, 4,000k NANC	96.83	85.95	42.6
BFGS, 4,000k NANC	96.91	85.90	42.7
MIRA, 4,000k $NANC$	96.84	85.79	42.9

Table: Evaluation of top models on Section 23 of CCGbank.

THE UNIVERSITY OF SYDNEY

Corpus	Speed (sents / sec)		
Sent length	5-20	21-40	41-250
News	242	44.8	8.24
Wiki	224	42.0	6.10
Bio	268	41.5	6.48

Table: Cross-corpus speed for the baseline model on data sets balanced on sentence length.

THE UNIVERSITY OF SYDNEY

Train Corpus	F-score
Rimell and Clark (2009)	81.5
Baseline	80.7
CCGbank + Genia	81.5
+ Newswire	81.9
+ Wikipedia	82.2
+ Biomedical	81.7
+ Bio with R&C models	82.3

Table: Performance comparison for models using extra gold standard biomedical data.

26

Acknowledgements

